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ABSTRACT

This paper presents an online dereverberation algorithm that is
derived within the maximum-likelihood expectation-maximization
(ML-EM) framework. We formulate an overlap-save observation
model for the multichannel blind problem in the DFT-domain. The
modeling of acoustic channel impulse responses as random variables
with a first-order Markov property facilitates the ensuing algorithm
to cope with time-varying conditions. We then show that the ML-
EM learning rules for the multichannel state-space model at hand
take the form of a recursive posterior estimator for the channels,
followed by an equalization stage for recovering the speech signal
subject to an expectation with respect to the estimated channel pos-
terior. Our derivation thus results in an iterative ML algorithm for
blind equalization and channel identification (ML-BENCH) which
comprises two distinct and coupled subsystems. The dereverbera-
tion performance of the proposed system is evaluated by considering
spectrograms and instrumental quality measures.

Index Terms—Expectation-maximization, frequency-domain
adaptive filtering, multichannel dereverberation, state-space model.

1. INTRODUCTION

The presence of reverberation can severely degrade the perceived
quality and intelligibility of speech signals in hands-free communi-
cation systems. Moreover, it generally leads to a performance loss
in applications such as automatic speech recognition or source lo-
calization. The task of recovering the undistorted speech signal, i.e.,
reducing the effects of reverberation, has thus evolved into a rapidly
growing area of research over the recent years.

Many existing algorithms are based on spectral subtraction tech-
niques which require the late reverberation to be estimated, e.g., by
using statistical models [1] or long-term multi-step linear predic-
tion [2]. Other approaches employ multichannel linear prediction
[3, 4] or optimal information-theoretic inference [5] to directly esti-
mate inverse filters that mitigate the reverberation effects. Channel-
based dereverberation algorithms usually aim at blindly estimating
the room impulse responses via adaptive algorithms [6] in order to
recover the source signal in a subsequent multichannel equalization
stage [7]. For the latter, the multiple-input/output inverse theorem
(MINT) has shown perfect dereverberation on the basis of precisely
known channels [8], but it generally suffers from channel identifi-
cation errors that can cause large distortions in the estimated signal.
Consequently, a major focus of contemporary research has been on
the design of robust equalizers [7, 9].

This work was supported by the German Research Foundation.

In this paper, we carry out a contained derivation within the
expectation-maximization (EM) framework to formulate a multi-
channel DFT-domain dereverberation algorithm that is optimal in
the maximum-likelihood (ML) sense. In our ML-EM formulation,
we model the acoustic channel as a random variable with a first-
order Markov property [10], which inherently enables the resulting
algorithm to operate in time-varying conditions [11], whereas the
speech signal is considered as an a priori unknown parameter. In
addition to the resulting multichannel state-space model, a cost func-
tion in the form of a lower-bound on the log-likelihood is presented
[12]. We then derive EM learning rules to tighten the bound and
maximize the log-likelihood. The resulting ML algorithm for blind
equalization and channel identification (ML-BENCH) eventually
takes the form of an iterative system that comprises two coupled
subsystems, i.e., a recursive posterior estimator for the channels in
the expectation-step (E-step) and a multichannel equalization stage
in the maximization-step (M-step), both of which are efficiently
implementable using vector arithmetics and FFT / IFFT.

The remainder of this paper is organized as follows. In Sec. 2,
we present our multichannel state-space observation model in the
DFT-domain. The ML-BENCH algorithm is presented in Sec. 3,
whereas the performance of the derived iterative system is evaluated
in Sec. 4. Finally, we conclude our work in Sec. 5.

In our notation, we use non-bold lowercase letters for scalar
quantities, bold lowercase letters for vectors, and bold uppercase
letters for matrices. Frequency-domain quantities are distinguished
by an underline. In addition, ⊗ represents the Kronecker prod-
uct and E{·} describes mathematical expectation. The superscript
H denotes Hermitian transposition, FM is the DFT-matrix of size
M × M , and IR is an R × R identity matrix. Lowercase letters k
and τ are sample- and frame-time indices, respectively, related via
k = τR + ν, ν = 0, 1, . . . , R − 1, τ ∈ Z. The term R denotes the
corresponding frame-shift, whereas M is the frame-size.

2. DFT-DOMAIN DYNAMICAL MODELING

We consider a speech signal sk that is transmitted through an acous-
tic system and captured by P microphones at discrete time k. The
ith microphone signal yi,k can then be expressed as

yi,k = h
T
i,k s

′

k + ni,k , i = 1 . . . P , (1)

where
hi,k = [hi,k,0 hi,k,1 . . . hi,k,L−1 ]

T (2)

is the time-varying channel impulse response of length L be-
tween the source and the ith microphone. The vector s′k =
[ sk sk−1 . . . sk−L+1 ]

T contains the L most recent samples of
sk and ni,k represents additive observation noise of the ith channel.
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2.1. Multichannel Observation Model

In order to formulate an efficient algorithm in the DFT-domain, we
now consider frame-based definitions of the quantities involved in
the linear convolution in (1). The frame-based source vector

sτ = [ sτR−M+1 sτR−M+2 . . . sτR ]T (3)

of length M can be transformed to the DFT-domain by multiplying
it with the DFT-matrix FM , i.e.,

sτ = FMsτ . (4)

Next, we consider a frame-based version wi,τ = hi,k=τR of the
channel impulse response hi,k. By modeling L = M −R non-zero
coefficients of wi,τ and applying the DFT-matrix FM , we obtain a
DFT-domain representation

wi,τ = FM

[
w

T
i,τ 0

T
R×1

]T
, (5)

where 0R×1 denotes the padding of R zeros. The ith DFT-domain
channel matrix Wi,τ of size M ×M is obtained by applying diag-
onalization towi,τ ,

Wi,τ = diag
{
wi,τ

}
. (6)

According to (1), the overlap-save convolution of Wi,τ with sτ in
the presence of an additive frame-based noise vector

ni,τ = [ni,τR−R+1 ni,τR−R+2 . . . ni,τR ]T (7)

of length R then describes the time-domain observation vector yi,τ ,

yi,τ = Q
T
F

−1
M Wi,τsτ + ni,τ , (8)

which is defined analogous to ni,τ . Here, Q = [0R×L IR ]T is
an M × R matrix required for linearizing the cyclic convolution
in the DFT-domain. By padding the observation vector yi,τ with
L = M − R zeros and applying FM , i.e., y

i,τ
= FMQyi,τ , we

arrive at the DFT-domain observation model for the ith channel,

y
i,τ

= FMQQ
T
F

−1
M Wi,τsτ + FMQni,τ . (9)

The constant matrix T = FMQQTF−1
M can be combined with the

channel matrix Wi,τ to obtain an overlap-save constrained version
Wi,τ = TWi,τ . This enables us to compactly express (9) as

y
i,τ

= Wi,τsτ + ni,τ . (10)

Here, we model ni,τ = FMQni,τ as a zero-mean and normally
distributed DFT-domain observation noise term of the ith channel,
with Ψn

i,τ = E
{
ni,τn

H
i,τ

}
as its diagonal covariance matrix. By

defining the following stacked quantities,

y
τ
=
[
y
H

1,τ
y
H

2,τ
. . . yH

P,τ

]H
, (11)

Wτ =
[
W

H
1,τ W

H
2,τ . . . WH

P,τ

]H
, (12)

our multichannel observation model can be expressed as

y
τ
= Wτsτ + nτ , (13)

where nτ is defined analogous to (11). If we model the noise terms
ni,τ to be channel-wise uncorrelated, i.e., E

{
ni,τn

H
j,τ

}
= 0M×M ,

∀ i �= j, the multichannel noise covariance matrixΨn

τ = E
{
nτn

H
τ

}
maintains full diagonality. An equivalent representation of the obser-
vation model in (13) is given by

y
τ
= Sτwτ + nτ , (14)

whereSτ = IP⊗TSτ is a PM×PM matrix with Sτ = diag{sτ}
and wτ denotes a stacked vector defined analogous to (11) contain-
ing the channels wi,τ .

2.2. First-Order Markov Model for Time-Varying Channels

For incorporating the time-variability of the acoustic channels, we
modelwi,τ as a random variable with a first-order Markov property,

wi,τ = A ·wi,τ−1 +Δwi,τ . (15)

The scalar A denotes the state-transition coefficient in the range
0 < A < 1 and Δwi,τ is a zero-mean and frame-wise uncorre-
lated process noise vector. The covariance of Δwi,τ is then given
by the diagonal matrix ΨΔ

i,τ = E
{
Δwi,τΔwH

i,τ

}
. Analogous to

(11), we define the stacked quantity

Δwτ =
[
Δw

H
1,τ Δw

H
2,τ . . . Δw

H
P,τ

]H
(16)

to express (15) in the multichannel form

wτ = A ·wτ−1 +Δwτ (17)

with ΨΔ
τ = E

{
ΔwτΔwH

τ

}
as the PM × PM diagonal multi-

channel process noise covariance matrix. Full diagonality of ΨΔ
τ

is assumed for derivational ease, i.e., E
{
Δwi,τΔwH

j,τ

}
= 0M×M ,

∀ i �= j. The expression (17) together with (13), or equivalently with
(14), describe our multichannel state-space model.

3. ML-BENCH ALGORITHM

For ensuring online attributes of the resulting algorithm, we formu-
late our ML-EM framework considering a likelihood function of the
form p(y

τ
| y

1:τ−1
, sτ ) which is conditioned on the parameter sτ

and all previous observations y
1:τ−1

. For the sake of brevity, here-

inafter, we will refer to this likelihood function as p(y
τ
| sτ ). By

inserting the unknown channel impulse responseswτ into the likeli-
hood function via marginalization and by using Jensen’s inequality,
we formulate the lower-bound [12] on the log-likelihood

ln p(y
τ
| sτ ) = ln

∫
p(y

τ
,wτ | sτ ) dwτ (18)

≥

〈
ln

(
p(y

τ
,wτ | sτ )

q(wτ )

)〉
q(w

τ
)

(19)

= F(q(wτ ), sτ ) , (20)

where q(wτ ) is an arbitrary distribution over the unknown channels
and 〈 · 〉

q(w
τ
) denotes an expectation with respect to q(wτ ). Opti-

mization of (20), to first fit and then maximize the log-likelihood,
leads to the joint estimation of wτ and sτ , respectively.

3.1. E-Step: Recursive Channel Identification

The joint distribution p(y
τ
,wτ | sτ ) = p(wτ | yτ

, sτ ) p(yτ
| sτ ) in

(19) can be factorized into the posterior distribution p(wτ | yτ
, sτ )

and the likelihood distribution p(y
τ
| sτ ). Thereafter, the functional

differentiation [12] of F(q(wτ ), sτ ) with respect to q(wτ ), i.e.,
∂F(q(wτ ), sτ ) / ∂q(wτ ), reveals q(wτ ) = p(wτ | yτ

, sτ ) as the
distribution that optimally tightens the lower-bound [11]. The mean
ŵi,τ and the covariance Pi,τ of the posterior p(wτ | yτ

, sτ ) can
be learned via the efficiently implementable state-space frequency-
domain adaptive filter (SSFDAF) [11]. By considering the multi-
channel state-space model in (14) and (17), we can conveniently ex-

18



y
τ
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Fig. 1. Proposed ML-BENCH dereverberation system.

press the diagonalized SSFDAF recursions for the ith channel as

ŵ
+
i,τ−1 = A · ŵi,τ−1 (21)

P
+
i,τ−1 = A2 ·Pi,τ−1 +Ψ

Δ
i,τ (22)

μ
i,τ

= P
+
i,τ−1

[
Ŝτ−1P

+
i,τ−1Ŝ

H

τ−1 +
M

R
Ψ

n

i,τ

]
−1

(23)

ei,τ = y
i,τ

−TŜτ−1ŵ
+
i,τ−1 (24)

ŵi,τ = ŵ
+
i,τ−1 + μ

i,τ
Ŝ
H

τ−1ei,τ (25)

Pi,τ =

[
IM −

R

M
μ

i,τ
Ŝ
H

τ−1Ŝτ−1

]
P

+
i,τ−1 , (26)

where μ
i,τ

, ei,τ , and Pi,τ are the Kalman stepsize, the error signal
and the state-error covariance for the ith channel. The superscript +
denotes prediction terms, whereas Ŝτ−1 = diag

{
ŝτ−1

}
represents

the estimated speech signal being injected into the E-step from the
previous M-step at τ − 1 as shown in Fig. 1. The covariances ΨΔ

i,τ

and Ψn

i,τ are estimated using the EM-based rules described in [11].

3.2. M-Step: Multichannel Equalization

For the resolution of the M-step, we factorize the joint distribution
p(y

τ
,wτ | sτ ) = p(y

τ
| wτ , sτ ) p(wτ | sτ ) in (19) in terms of the

distributions p(y
τ
| wτ , sτ ) and p(wτ | sτ ). The application of the

conjugate derivative ∂ / ∂s∗τ [13] toF(q(wτ ), sτ ) in order to obtain
an optimal estimate ŝτ results in

∂

∂s∗τ
F(q(wτ ), sτ ) =

〈
∂

∂s∗τ
ln p(y

τ
| wτ , sτ )

〉
q(w

τ
)

. (27)

The transition distribution p(wτ | sτ ) = p(wτ | Hτ ) gets elimi-
nated from (27) as it is not a function of sτ , rather it is a mul-
tivariate Gaussian which is conditioned on the belief-state Hτ =[
(ŵ1,τ−1,P1,τ−1) . . . (ŵP,τ−1,PP,τ−1)

]
[11]. Considering the

observation model in (13), which is equivalent to (14), the multivari-
ate Gaussian log-transmission distribution is expressed as

ln p(y
τ
|wτ , sτ ) =

−
[
y
τ
−Wτsτ

]H
Ψ

n
−1

τ

[
y
τ
−Wτsτ

]
+ const. (28)

Next, we substitute (28) into (27) and equate the expression to zero,〈
∂

∂s∗τ

[
y
τ
−Wτsτ

]H
Ψ

n
−1

τ

[
y
τ
−Wτsτ

]〉
q(w

τ
)

= 0 .

(29)

The expansion of (29) followed by differentiation then yields〈
W

H
τ Wτ

〉
q(w

τ
)
ŝτ =

〈
W

H
τ

〉
q(w

τ
)
y
τ
. (30)

The expectations in (30) are resolved after invoking the approxima-
tionsT ≈ (R/M) IM andTHT ≈ (R/M) IM [14], which lead to
W

H
i,τ ≈ (R/M)WH

i,τ and W
H
i,τWi,τ ≈ (R/M)WH

i,τWi,τ , to
get [11] 〈

W
H
i,τ

〉
q(w

τ
)
≈

R

M
Ŵ

H

i,τ (31)

and 〈
W

H
i,τWi,τ

〉
q(w

τ
)
≈

R

M

(
Ŵ

H

i,τŴi,τ +Pi,τ

)
, (32)

where Ŵi,τ = diag
{
ŵi,τ

}
. We substitute the results obtained in

(31) and (32) into (30) to finally obtain the estimated speech signal

ŝτ = G
H
τ y

τ
, (33)

where the equalizer

G
H
τ =

[
P∑

i=1

(
Ŵ

H

i,τŴi,τ +Pi,τ

)]−1

Ŵ
H

τ (34)

comprises P equalization filters and Ŵτ is defined analogous to

(12). The common term
∑P

i=1

(
Ŵ

H

i,τŴi,τ +Pi,τ

)
in (34) is fully

diagonal and hence an M × M matrix inverse is avoided. In prac-
tice, this term is normalized to unity to prevent the mutually coupled
system in Fig. 1 from approaching a trivial solution. Additional con-
straining eventually needs to be applied to (33) to avoid the effect of
cyclic convolution in the DFT-domain.

4. RESULTS

For our simulations, we generated impulse responses hi,k corre-
sponding to a single source and a linear array with P = 10 micro-
phones inside a room with dimensions 7 m × 5 m × 4 m (length ×
width × height) using a modified version [15] of the image method
[16]. The source was located at (5 m, 1.5 m, 1.5 m), whereas the first
microphone of the array was positioned at (2 m, 4 m, 1.5 m). The
other microphone positions can be obtained by successively adding
0.1 m to the x-coordinate of the first microphone. The reverberation
time T60 of the room was varied from 0.2 s to 1.0 s in steps of 0.2 s.
For the generation of the microphone signals yi,k, the channel length
L in (2) was chosen as T60 · fs at a sampling rate of fs = 16 kHz.

As the source signal sk, we used ten different speech signals cor-
responding to five female and five male speakers. Reverberant sig-
nals yi,k were obtained by convolving the generated channels hi,k

with each of the source signals sk and adding zero-mean white Gaus-
sian noise ni,k at a signal-to-noise ratio (SNR) of 30 dB. We con-
sider the last microphone of the array as the reverberant reference
signal, since it is the closest to the source. For our algorithm, we use
a state-transition coefficient A = 0.9997, a frame-size M = 1024,
and a frame-shift R = 512, thus resulting in the modeled impulse
response length ofM −R = 512 coefficients.

As an anchor for our evaluation, we consider the output sk =
(1/P )

∑P

i=1 yi,k−di of an ideal delay-and-sum beamformer (DSB),
where the time delays di were exactly determined from the known
source and microphone positions. Note that this a priori information
is not available to our fully blind ML-BENCH algorithm.
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Fig. 2. Spectrograms of (a) the reverberant reference, (b) the DSB
output, and (c) the ML-BENCH output. T60 = 0.6 s, SNR = 30 dB.

Fig. 2 shows the spectrograms of the reverberant reference sig-
nal, the output sk of the DSB, and the estimate ŝk of the proposed
algorithm for a female speaker and a reverberation time of T60 =
0.6 s. It can be seen that the DSB mainly reduces the observa-
tion noise, whereas the proposed ML-BENCH algorithm also sharp-
ens the temporal edges and restores the fine-structure such that the
speech harmonics become visible again.

For an objective evaluation, we consider spectral distances (SD)
and cepstral distances (CD) to the clean speech signal as defined
in [3] and [17], respectively. Table 1 and Fig. 3 depict both of the
measures averaged over all ten speakers for different reverberation
times T60. In all cases, the proposed blind algorithm shows signif-
icant improvements as compared to the ideal DSB. On average, the
DSB achieves SD and CD gains of 2.1 dB and 0.7 dB, respectively,
as compared to the reverberant signal. The ML-BENCH algorithm
surpasses the DSB with corresponding gains of 3.1 dB and 1.6 dB.

5. CONCLUSIONS

In this contribution, we proposed an online multichannel blind dere-
verberation algorithm in the DFT-domain that was derived within
the maximum-likelihood expectation-maximization framework. The
resulting ML-BENCH algorithm comprises coupled channel identi-
fication and equalization subsystems, both of which are efficiently
implementable. We finally evaluated the derived algorithm by con-

T60 = 0.2 s 0.4 s 0.6 s 0.8 s 1.0 s

Reverberant 8.7 10.9 12.1 12.9 13.4

Ideal DSB 6.2 8.6 10.0 10.9 11.6

ML-BENCH 5.6 7.5 9.1 10.0 10.4

Table 1. Spectral distances [dB] for five reverberation times T60.
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Fig. 3. Cepstral distances for five reverberation times T60.

sidering instrumental performance measures for different reverber-
ation times and by analyzing speech spectrograms. The obtained
results substantiate the efficacy of our approach.
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