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ABSTRACT

We propose a method for narrowband localization of sources in an
unknown reverberant field. A sparse model for the wavefield is in-
troduced, derived from the physical equations. We compare two lo-
calization algorithms that take advantage on the structured sparsity
naturally present into the model : a greedy iterative scheme, and an
�1 minimization method. Both methods are validated in 2D on nu-
merical simulations, and on experimental data with a chaotic-shaped
plate. These results, robust with respect to the specific sampling of
the field and to noise, show that this approach may be an interesting
alternative to traditional approaches of source localization, when a
large number of narrowband sensors are deployed.

Index Terms— source localization, sparsity, acoustic waves,
plate vibrations, room acoustics.

1. INTRODUCTION

Numerous methods for source localization in a vibrating medium
have been developed, with various models and algorithms. Most of
them assume either a free field propagation [1], or, in the case of an
enclosed space with strong reverberation, specific prior knowledge
about the propagation and reverberation, for instance a pre-measured
database of impulse responses [2].

The method introduced here deals with the case of a possibly
strong, but unknown, reverberant field. It is based on a sparse model
of the wavefield within an enclosed space, directly derived from the
partial differential equation governing the variations of the pressure
field. Apart from homogeneity and isotropy, we do not assume any
prior knowledge on the propagation medium. In particular, the dis-
persion of the medium and its boundary conditions are left unspeci-
fied, making this method relevant for a wide range of cases, such as
membranes, plates or rooms. From a number of point measurements
at a single frequency, sources can be localized even in the presence
of a strong reverberant field, or additional sources outside the region
of interest. In these cases, standard methods such as beamforming,
MUSIC, time reversal, etc., would not be appropriate. The price to
pay for this performance is a high number of point measurements
(i.e., sensors) around the sources in the space of interest, signifi-
cantly larger than for traditional methods. This number is, however,
smaller than the number of sensors required by the sampling the-
orem to unambiguously measure the wavefield. Note also that we
only consider here measurements at a single frequency: the exten-
sion to wideband measurements, that would require more sophisti-
cated structured sparsity models, is left for further research.
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Section 2 of this paper introduces the sparse model used to de-
scribe the impulse responses. Two localization algorithms based on
this model are described in section 3. Simulated as well as experi-
mental results are given in section 4 and 5, respectively. Section 6
concludes the paper.

2. SPARSE MODELING OF WAVEFIELDS

Let us start, for the sake of simplicity, with the case of the acoustic
pressure within a room. The pressure field p(x, t) satisfies the wave
equation: {

Δp− 1
c2

∂2p
∂t2

= s(x, t)
boundary conditions

with c being the wave velocity and s(x, t) the sources. Here, the
boundary conditions do not have to be explicitly given, but classical
examples would be Dirichlet, Neumann, or impedance conditions.
The source term is assumed to be the sum of few punctual sources
located at points xi:

s(x, t) =

S∑
j=1

sj(t)δxj (x)

with δxj a Dirac at point xj .
In the frequency domain, the wave equation becomes the

Helmholtz equation: for all ω, the Fourier transform p̂(x, ω) of
the pressure satisfies {

Δp̂+ k2p̂ = ŝ
boundary conditions

where the wavenumber k equals ω/c. The source term is here

ŝ(x, ω) =

S∑
j=1

ŝj(ω)δxj (x).

The first step towards a sparse model of the room response is to de-
compose it as the sum of a particular solution of the equation without
the boundary conditions, and a solution of the homogeneous equa-
tion with adequate boundary conditions. Physically, these two com-
ponents represent the direct contribution of the sources and the dif-
fuse field, respectively.

The contribution of a source at point x0 is an Hankel function of

order 0: h
(1)
0 (k||x − x0||) = j0(k||x − x0||) + iy0(k||x − x0||).

The first kind Bessel function j0 will here be included in the homo-
geneous component p0. The particular solution ps, representing the
direct contribution of the sources, can thus be chosen as a sum of
Bessel functions of the second kind y0, at order 0:

ps(x, ω) =
k

4π

S∑
j=1

ŝj(ω)y0(k||x− xj ||)
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The homogeneous part p0, for the diffuse field, is solution of the
homogeneous Helmholtz equation. It also satisfies some boundary
conditions that depend on the boundary conditions of the total field,
as well as on the field generated by possibly other sources outside
of the considered domain. As this field is unknown, the boundary
conditions satisfied by the diffuse field are unknown. However, in-
dependently of the boundary conditions, a solution of the homoge-
neous Helmholtz equation can be approximated by a sum of L plane
waves el(x) = exp(ikl · x) where the wave vectors kl have polar
coordinates (r, θ) = (k, 2πl/L) [3]:

p0 ≈
L∑

l=1

αlel(x)

Note that the number L of plane waves needed for a good ap-
proximation of p̂0 is significantly less than the overall dimensional-
ity of the problem, i.e. the number of samples needed by the sam-
pling theorem or the size of the discretization for standard numerical
schemes like finite differences or finite elements. Indeed, while the
size of standard discretization schemes scales like the square of the
product of the wave number by the diameter of the domain of inter-
est, plane wave description of the field needs a number of compo-
nents proportional to this product.

Finally, our sparse model for solutions of the Helmholtz equa-
tion with punctual sources writes:

p̂ ≈
L∑

l=1

αlel(x) +

S∑
j=1

ŝj(ω)y0(k||x− xj ||).

with unknowns αl, the coefficients of the decomposition of the dif-
fuse field, ŝj(ω) and xj , the amplitude and positions of the sources,
to be determined. In practice, the diffuse field (the first term) can be
much larger than the source field (the second term) containing the in-
formations to be retrieved. It should be emphasized that the sparsity
in this wavefield decomposition is of very different nature in each
of its two terms: in the first term, sparsity arises from the structure
of the approximation subspace, chosen as the span of plane waves
restricted to sharing the same wavenumber. In contrast, sparsity in
the second term has the more standard form, where we assume that
only few source amplitudes ŝj(ω) are non-zero.

3. ALGORITHMS

A dictionary D is created from this model by quantizing the loca-
tions of candidate sources on a regular grid, at points yj . The field
is measured at M points xm. The dictionary D is composed of the
concatenation of two sub-dictionaries:

• a dictionary of plane waves W, sampled at locations xm. Its
(m, l) term is wml = el(xm),

• a dictionary of source terms S at candidate locations yj , sam-
pled at the same locations xm. Its (m, j) term is smj =
y0(k||yj − xm||).

The sampled wavefield p then writes

p = Wα+ Sβ

where no priors are assumed on the coefficients of the plane waves
αl, while the coefficients of the source terms βj are assumed sparse:
the size of the support of β is the number of sources.

As the sparse model used to describe the impulse responses is
not standard, specific algorithms have to be designed. Here, we pro-
pose two simple modifications of standard sparse regression algo-
rithms: the first one is based on Orthogonal Matching Pursuit (OMP)
[4], the second on a group sparsity version of Basis Pursuit [5].

3.1. Greedy source localization algorithm

OMP identifies the sources iteratively, by correlating the measure-
ments with a dictionary of sources. Here, a direct application of this
algorithm would fail, as the correlation between the sources and the
dictionary would be masked by the correlations with the diffuse field.
The initialization step of the modified algorithm is then to “clean”
out this diffuse field. As shown before, this diffuse field is approxi-
mated by a space spanned by a set of plane waves. Hence, cleaning
the diffuse field is achieved by projecting the measurements on the
orthogonal complement of the plane wave space. Now, correlations
with this cleaned field allow the identification of the first source. The
original field is then projected on the orthogonal complement of the
space by the plane waves and the first identified source. Correlations
with this field identifies the second source, and so on.

Algorithm 1 Greedy source localization algorithm

Input: measurements p, number of sources n, plane waves dictio-
nary W, source atoms sy

Output: estimated positions of the sources yj

ps ←WW†p
for j = 1 to n do

yj ← maxy | 〈sy,ps〉 |
W← (

W|syj

)
ps ←WW†p

end for

3.2. Group Basis Pursuit

The second algorithm is based on the Basis Pursuit framework:
sparse signals are recovered via minimization of their �1 norm with
constraints modeling the measurements. More complex sparsity
models can be recovered via minimization of structured norms [6].

Here, the minimisation problem to be solved is

(α̂, β̂) = min
α,β
||α||2 + ||β||1 s.t. ||Wα+ Sβ − p|| < ε

where ε is the expected amount of noise in the measurements. The �2
norm on the α coefficients indicate that this set of coefficients does
not have to be sparse : sparsity of the diffuse field arises from the
fact that only plane waves with wave vector kj with modulus k are
allowed, but all coefficients can be non-zero. After minimization, the
few non-zero coefficients of β indicate the location and amplitude of
the sources.

4. NUMERICAL SIMULATIONS

The algorithm is first tested on simulated data. For the ease of imple-
mentation, and better visualization, these simulations are run in 2D.
Solutions of the Helmholtz equation for a square membrane, with 2
sources, are computed using FreeFem++, a finite element solver [7].

Greedy algorithm: The simulated field is shown on fig. 1(a),
and fig. 1(b) displays the 121 measurement points, taken at random
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Fig. 1. Numerical simulations : (a) Modulus of the simulated field
(b) Position of samples used for the localization

Fig. 2. Numerical simulations : Decomposition of the measurements
as (a) diffuse component p0 and (b) source component ps

within the surface of interest and on its contour. The wavefield de-
composition as a diffuse field (projection on the span of the plane
waves), plus a source field (estimated as the difference between orig-
inal and diffuse field), is shown on fig. 2. As shown on fig. 3, corre-
lating the samples with the source atoms before this decomposition
gives no useful informations about the position of the sources. Actu-
ally, the correlation with the total field is the sum of the correlation
with the diffuse field and the source field:

〈sy,p〉 = 〈sy,p0〉+ 〈sy,ps〉
The diffuse field p0 being significantly larger than the source field
ps, the correlations we are interested in are masked by the large
correlations with the diffuse field. However, after projection on the
orthogonal complement of the plane wave space, the localization in-
formation enclosed in the field becomes more visible. The correla-
tions computed at the first step of OMP allow the identification of
the first source. The second source is then identified at the second
iteration: figure 3 shows the correlations at the second step, and the
estimated positions of the sources, which are near the true positions.

Group basis pursuit: Here again, application of Basis Pursuit us-
ing the free field model fails as can be seen on fig. 4(a): artifacts on
the border of the domain appear. This can be interpreted as a tenta-
tive by Basis Pursuit to explain the diffuse field as a sum of source
terms placed outside of the domain, as would be done by the Method
of Fundamental Solutions [8]. Using the Group Basis Pursuit as im-
plemented in the spgl1 toolbox [9] [10], and the modified objective
function, we obtain a correct estimation of the sources position, as
seen on fig. 4(b) without artifacts.

5. EXPERIMENTAL RESULTS

Finally, we test our localization method on real experimental data,
with a single source on a metallic plate. The experimental setup is

Fig. 3. Numerical simulations : Correlations at the first step of the
greedy algorithm (a) before and (b) after the projection. (c) Correla-
tions at the second step. (d) Estimated source positions.

Fig. 4. Numerical simulations : Sources estimated by (a) basis pur-
suit with sources dictionary (b) group basis pursuit with plane waves
and sources dictionary

pictured on fig 5: the plate is excited by a piezoelectric transducer
(PZT), and its normal displacement is measured by a laser vibrome-
ter. The behavior of this displacement w is governed, in the case of
thin plates, by the Kirchhoff-Love equation:

DΔ2w + 2ρh
∂2w

∂t2
= f

where D is the bending stiffness of the plate, ρ its density, h its
thickness and f the normal force applied to the plate. As shown in
[11], approximation of the solutions of the plate equation without
right-hand term would need propagative ( eik·x ) and exponential (
ek·x ) waves. However, the domain of interest being far from the
boundaries, the latter can be neglected. Sources terms are then the
sum of a second kind Bessel function and a second kind modified
Bessel function, the latter being neglected here.

As the dispersion relation of the plate is here not known, a prior
estimation of the correct wave number is necessary. The estimation
is done using the procedure described in [11]. As the source field is,
again, weak compared to the diffuse field, the estimation of the wave
number is not perturbed by the presence of sources.

Remarkably, as observed in [11], the field can be sampled on a
regular grid with a sub-Nyquist step (a period slightly larger than the
half wave-length), without any significant effect on the estimation of

11



Fig. 5. (a) Experimental setup (b) Amplitude of the field measured
at frequency f = 30 631 Hz on a 4mm sampling grid.

Fig. 6. (a) Uniform sub-Nyquist sampling used for localization (b)
Amplitude of the corresponding measured subsampled field

the wavenumber nor the diffuse field. Here, we used a square grid of
64 samples, with a step size of 32 mm. At the frequency f = 30631
Hz, the estimated wavelength is 49.4 mm (the half wavelength is
indeed smaller than the sampling step). The samples used as well as
the amplitude of the measured signal are drawn on fig. 6.

Greedy algorithm: Correlations for the first step of OMP (the only
step in this 1-source case) are shown on fig. 7, before and after pro-
jection. Source localization fails before projection, while after, the
source can be clearly localized near the center of the domain.
Group basis pursuit: Source estimation was performed with plain
Basis Pursuit (source-only dictionary of Bessel functions) and Group
Basis Pursuit (full dictionary, with plane waves and sources). Esti-
mated source locations are shown on fig. 8 (a) and (b), respectively.
Again, the full dictionary is required for accurate source localization.

6. CONCLUSION

We introduced a new source localization framework working in
an unknown reverberant environment. While it has here been for-
mulated in a narrowband situation, generalization to wideband
signals would lead to joint sparsity across frequencies. Similarly,
the method can be extended to directional sources with the use of a
larger source dictionary and group sparsity.

Although the algorithms proposed here show good performance
both in numerical tests and on real measurements, there are still a
number of open issues. For instance, the minimum number of sen-
sors and their optimal positions are still open questions.

Finally, we used here the standard sparsity-at-synthesis view-
point. Further work will compare these results to the ones obtained
via newer sparsity-at-analysis approaches.
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Fig. 7. Correlations at the first step of the greedy algorithm (a) before
and (b) after the projection, on the experimental data.

Fig. 8. Source position and amplitude estimated by (a) basis pursuit
(source-only dictionary) (b) group basis pursuit (full dictionary)
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