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ABSTRACT

Three dimensional soundfield recording and reproduction is an area
of ongoing investigation and its implementation is increasingly
achieved through use of the infinite Spherical Harmonic soundfield
expansion. Perfect recording or reconstruction requires infinite
microphones or loudspeakers, respectively. Thus, real-world ap-
proximations to both require spatial discretisation, which truncates
the soundfield expansion and loses some of the soundfield infor-
mation. The resulting truncation error is the focus of this paper,
specifically for soundfields comprising of spherical waves. We de-
fine two norms of the truncation error to signal ratio, L2 and L∞,
for comparison and use in different situations. Finally we observe
how some of these errors converge to the plane wave case under
certain circumstances.

Index Terms— Acoustic signal processing, spherical harmonic
expansion, truncation error, spherical waves

1. INTRODUCTION

Multichannel recording and reproduction of three dimensional
soundfields has attracted much attention from researchers in recent
times, especially using the Spherical Harmonic expansion because
of its spatial representation of the soundfield. Applications include
beamforming and immersive soundfield reproduction amongst oth-
ers. Both recording and reproduction processes are complicated
by the introduction of errors due to several factors, some of which
have been investigated in the literature e.g. small positional errors
of microphones [1] and/or loudspeakers, the method used to convert
microphone signals into spherical harmonic coefficients and back
into speaker feeds [2] and lastly the truncation error inherent in
using spatially discrete media to record/reproduce the sound field
[3, 4].

Estimating the truncation error is very important as it is impos-
sible to eliminate. Definitions vary between authors e.g. the unnor-
malised upper bound of the truncation error on the sphere [4] or the
normalised truncation error to signal ratio, integrated over the sphere
[3]. However, these papers have investigated truncation errors in the
context of the farfield, i.e. plane wave soundfields only, and the anal-
ysis in [3] places restrictions on the maximum frequency and radius
of the low error region. The use of different metrics of the truncation
error makes comparison between them difficult. In this paper, we ex-
amine the truncation error for near-field spherical waves and propose
two truncation error to signal ratio metrics based on the L2 and L∞
norms that can be used given certain restrictions on the soundfield.

This paper firstly introduces the conventions and definitions for
functions used throughout. It then discusses the two types of trunca-
tion error and derives results for them for spherical waves. Finally
it observes if and how these error definitions converge to previously
derived plane wave solutions.

2. BACKGROUND

We have found that conventions and notations used in this field vary
widely between and even amongst research groups. As such, we
find it prudent to specify the assumptions we have made to avoid
confusion.

2.1. Conventions

Spherical coordinates are defined by r = (r, θ, φ) as the radius,
angle of inclination from the positive z-axis and angle of azimuth
from the positive x-axis respectively.

The engineering convention for the DFT is used. As such, unit
amplitude plane waves are defined as (1) and spherical waves are
defined as (2). ω and k are the angular frequency and wave number,
k = −kr̂s and rs = (rs, θs, φs) is the source location.

p(t, r)pl = exp{i(ωt− k · r)} (1)

p(t, r)sph =
exp{i(ωt− k|r− rs|)}

|r− rs| (2)

2.2. Definitions

The definition of the spherical harmonic of mode (n,m) used is:

Y m
n (θ, φ) =

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!P

|m|
n (cos(θ))eimφ

(3)

The general solution to the wave equation in a non-scattering
environment is:

p(t, k, r) = P (k, r)× eiωt

=

[ ∞∑
n=0

jn(kr)
n∑

m=−n

Am
n (k)Y m

n (θ, φ)

]
eiωt

(4)

P (k, r) can be separated into two components: the truncated
signal comprising of terms from orders 0 to N and the truncation
remainder comprising of terms of order n > N . The various error
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Fig. 1. L2 error (dB) with N varying from 0 to 20.

types described herein are permutations of this remainder. jn(kr) is
the spherical Bessel function.

Remainder =
∑
n>N

jn(kr)
n∑

m=−n

Am
n (k)Y m

n (θ, φ) (5)

The spherical harmonic coefficients Am
n are defined for plane

waves and the interior solution of for spherical waves below. They
are modified from [5] such that both plane and spherical waves use
the engineering Fourier transform convention and that (θs, φs) is
the direction of the spherical wave source, but is anti-parallel to the
direction of equivalent plane wave. The interior solution holds true
for r < rs [6].

Am
n pl(k) = 4πinY m∗

n (θs, φs) (6)

Am
n sph(k) = −4πikh(2)

n (krs)Y
m∗
n (θs, φs) (7)

where h
(2)
n (krs) is the spherical Hankel function of the second kind.

We will define the Lq error to signal ratio as

Lq(εN ) =

(´ |P − PN |qdΩ´ |P |qdΩ
)1/q

=

(
fq
gq

)1/q

(8)

where P refers to the pressure signal P (k, r), PN refers to the trun-
cated signal up to order N and

´
dΩ is the integral over the unit

sphere. We have defined fq and gq as the numerator and denomina-
tor of the error function inside the qth root, as they will be calculated
separately for convenience in the analysis.

3. L2 ERROR

The L2 error represents an averaging of the truncation error over the
sphere. We define it to be

L2(εN ) =

(´ |P − PN |2dΩ´ |P |2dΩ
)1/2

(9)
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Fig. 2. Restrictions on the values of krs for various orders N .

The numerator of this may be calculated for spherical waves fol-
lowing the method in [3], making use of the orthonormality and ad-
dition theorems for spherical harmonics [6].

f2 =

ˆ
|P − PN |2dΩ

=

ˆ ∣∣∣∣∣
∑
n>N

jn(kr)
n∑

m=−n

Am
n (k)Y m

n (θ, φ)

∣∣∣∣∣
2

dΩ (10)

=
∑
n>N

n∑
m=−n

∑
p>N

p∑
q=−p

jn(kr)jp(kr)×Am
n Aq∗

p

×
ˆ

Y m
n (θ, φ)Y q∗

p (θ, φ)dΩ

=
∑
n>N

(4πk)2jn(kr)
2|hn(krs)|2 2n+ 1

4π
Pn(r̂s .̂rs) (11)

=4πk2
∑
n>N

(2n+ 1)jn(kr)
2 (jn(krs)2 + yn(krs)

2)
(12)

Similarly, the pressure function g2 can be expressed as

g2 = 4πk2
∞∑

n=0

(2n+ 1)jn(kr)
2 (jn(krs)2 + yn(krs)

2)
(13)

As such f2 can be re-written as (14) and g2 as (15), which is
independent of the source direction.

f2 = g2 − 4πk2
N∑

n=0

(2n+ 1)jn(kr)
2 (jn(krs)2 + yn(krs)

2)
(14)

g2 =

ˆ ∣∣∣∣e−ik|r−rs|

|r− rs|
∣∣∣∣
2

dΩ =

ˆ
1

|r− rs|2 dΩ =
2π

rrs
ln

rs + r

rs − r
(15)
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Fig. 3. L∞ error (dB) for small kr,krs with N varying from 0 to
20.

Finally, we define the L2 norm of the truncation error to signal
ratio for spherical waves as

L2(εN ) =

(
1− 2 kr × krs

ln [(rs + r)/(rs − r)]

N∑
n=0

(2n+ 1)jn(kr)
2×

(
jn(krs)

2 + yn(krs)
2))1/2

(16)

Figure 1 shows the plot of this error in decibels for various trun-
cation orders against kr and krs. We plot the error in decibels for
ease of viewing the surfaces of different orders N .

4. L∞ERROR

The L∞ error represents the maximum truncation error on the sphere
divided by the maximum pressure signal on the sphere due to the
incoming spherical wave.

4.1. Derivation

The definition of the L∞ error is as follows:

L∞(εN ) =

´
max |P − PN |dΩ´

max |P |dΩ (17)

We will first look at the denominator of this error, as the numer-
ator requires certain assumptions to be made about r and rs.

g∞ =

ˆ
max

∣∣∣∣e−ik|r−rs|

|r− rs|
∣∣∣∣ dΩ ≤

ˆ
1

rs − r
dΩ =

4π

rs − r
(18)

Finding the numerator of the L∞ error requires the component
functions to be replaced with their upper bounds. The spherical har-
monic functions can be easily replaced using the addition theorem,
eliminating a dependence on (θ, φ). However the upper bounds of
the spherical Bessel and Hankel functions are only valid for certain

Fig. 4. L∞ error (dB) for small kr and large krs with N varying
from 0 to 20.

argument values. We have investigated two cases, firstly assuming

that kr, krs �
√

N + 3
2

and secondly that kr �
√

N + 3
2

and

krs � (N + 1
2
)2/2 [7]. The difference between these cases is the

use of a small or large krs as argument to the spherical Hankel func-
tion. Figure 2 shows the small and large argument restrictions on
krs. Note that the interior solution forces kr < krs.

The symbols z and zs using in the following subsections refer to
kr/2 and krs/2 respectively.

4.1.1. Small argument for the spherical Hankel function:

In this case, the small argument approximations for jn(kr) and
hn(krs) were used. The upper bound for |P − PN | was calculated
in [8] using techniques similar to [9] giving the following result for
f∞:

f∞ = 4π×[
kπ

2

(zzs)
N+1

Γ(N + 3
2
)2

[
(N + 3

2
)

(N + 3
2
)2 − zzs

]
+

(
r

rs

)N+1
1

rs − r

]

(19)

The small argument L∞ error is defined as (20) and it is plotted
in decibels for various orders N in Figure 3 where kr and krs have

been normalised for each N by
√

N + 3
2

.

L∞(εN ) = π(zs − z)
(zzs)

N+1

Γ(N + 3
2
)2

[
(N + 3

2
)

(N + 3
2
)2 − zzs

]

+ (z/zs)
N+1

(20)

4.1.2. Large argument for the spherical Hankel function:

In this case, the small argument approximation for jn(kr) is used,

while the large argument approximation for h
(2)
n (krs) is used as-

suming krs � (N + 1
2
)2/2 [10].
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h(2)
n (krs) ≤ in+1 e

−ikrs

krs
(21)

Using the methods described above, a result for this case is
found that is quite similar to the plane wave result in [9].

f∞ = 4πmax

∣∣∣∣∣
∑
n>N

jn(kr)
n∑

m=−n

Am
n Y m

n (θ, φ)

∣∣∣∣∣
=

4π

rs

∑
n>N

(2n+ 1)|jn(kr)|

=
4π

√
π

rs

zN+1

Γ(N + 3
2
)

(N + 3
2
)

(N + 3
2
− z)

(22)

For small kr and large krs the L∞ error is (23). This is plotted
in Figure 4 for various orders N against kr and krs which have

been normalised by
√

N + 3
2

and (N + 1
2
)2/2 respectively. It is

interesting to note that the only difference between this definition
and that of the plane wave definition in [4] is a factor of (1− r

rs
).

L∞(εN ) =
√
π(1− z

zs
)

zN+1

Γ(N + 3
2
)

(N + 3
2
)

(N + 3
2
− z)

(23)

5. CONVERGENCE WITH PLANE WAVES

Using the normalisation coefficient from [3] that defines a spherical
wave with amplitude e−ikrs/rs, it can be shown that the spheri-
cal harmonic coefficients of such a spherical wave converge to the
equivalent plane wave as rs → ∞.

lim
rs→∞

rse
ikrsAm

n sph

= lim
rs→∞

rse
ikrs .− 4πik h(2)

n (krs) Y
m∗
n (θs, φs) (24)

= lim
rs→∞

4π krse
ikrs i3 in+1 e

−ikrs

krs
Y m∗
n (θs, φs)

=4πinY m∗
n (θs, φs) = Am

n pl (25)

As each term of the spherical wave spherical harmonic expan-
sion converges to the corresponding term of the plane wave, it can
also be said that both the truncated signal PN and the remainder
also converge. Similarly, the L2 spherical wave truncation error con-
verges to the square of the plane wave result in [3].

The spherical wave L∞ error for small arguments (Section
4.1.1) cannot converge to the plane wave result of [9] because of
the assumption made about the size of krs. However, in the mixed
argument case, where krs must be large, the result is very similar to
that of the plane wave. If the normalisation coefficient is used and
rs is taken to ∞, this will converge to the plane wave result.

6. DISCUSSION

The proposed norms of the truncation error show us how the spher-
ical wave truncation error behaves with respect to wavenumber, ra-
dius, source radius and truncation order. Most importantly, as kr
approaches krs, the error increases exponentially. Both are indepen-
dent of the source direction.

These error functions are valid only for r < rs due to our use
of the interior solution to the spherical wave expansion. Particularly,

the L2 error makes no assumptions about the source wavenumber
or radius, allowing it to be used in any circumstance. The L∞ er-
ror function is useful as a simpler approximation of the maximum
possible error, but has the disadvantage of only being able to be
used for arguments within the limitations described in Section 4. By
observation, the error decreases with kr. As such, these equations
can be used to determine an appropriate truncation order, and hence
number of microphones/loudspeakers required, to record or repro-
duce the soundfield within a particular reproduction region, or set
frequency and reproduction radius limitations for a particular micro-
phone/loudspeaker array.

The convergence of these error functions to the corresponding
plane wave results is satisfying as it shows that our results are con-
sistent with other researchers’ findings.

7. CONCLUSION

In this paper we have proposed the L2 norm and L∞ norms for small
and large arguments of the truncation error to signal ratio for spher-
ical waves and explained their use in different circumstances. We
have also shown that under certain circumstances, these error func-
tions converge to those of the plane wave.

8. REFERENCES

[1] B. Rafaely, “Analysis and design of spherical microphone ar-
rays,” Speech and Audio Processing, IEEE Transactions on,
vol. 13, no. 1, pp. 135–143, 2005.

[2] A. Laborie, R. Bruno, and S. Montoya, “A new comprehensive
approach of surround sound recording,” in Audio Engineer-
ing Society Convention 114, 3 2003. [Online]. Available:
http://www.aes.org/e-lib/browse.cfm?elib=12540

[3] D. B. Ward, T. D. Abhayapala, and S. Member, “Reproduction
of a plane-wave sound field using an array of loudspeakers,”
IEEE Trans. Speech Audio Process, vol. 9, pp. 697–707, 2001.

[4] T. Abhayapala, T. Pollock, and R. Kennedy, “Characterisation
of 3d spatial wireless channels,” vol. 1, 2003, pp. 123–127.

[5] M. Poletti, “Unified description of ambisonics using real and
complex spherical harmonics,” June 2009.

[6] E. Williams, Fourier Acoustics: Sound Radiation and
Nearfield Acoustic Holography. London, UK: Academic
Press, 1999.

[7] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables.
New York: Dover Publications, 1964.

[8] S. Brown and D. Sen, “Analysis of truncation and sampling
errors in the spherical harmonic representation of soundfields.”
162nd Meeting of Acoustical Society of America (accepted for
publication), October 2011.

[9] T. Abhayapala, T. Pollock, and R. Kennedy, “Characterisation
of 3d spatial wireless channels,” vol. 1, 2003, pp. 123–127.

[10] L. J. Ziomek, Fundamentals of acoustic field theory and space-
time signal processing. CRC Press, 1995.

8


