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ABSTRACT

Polynomial broadband beamforming designs enable an easy,

smooth, and dynamic steering of the main beam. A number of design

methods based on constrained optimization have been proposed re-

cently which allow for the control of the robustness of these designs.

Of course, the addition of robustness constraints reduces the num-

ber of degrees of freedom of the design. In this paper, we present

a method to enhance the spatial selectivity of the robust polynomial

beamformer design by exploiting the structure of symmetric arrays

while still satisfying the robustness constraints. The effectiveness of

this method is shown in design examples for symmetric linear and

circular arrays.

Index Terms— Robust Polynomial Beamformer, Symmetric

Arrays

1. INTRODUCTION

With broadband beamforming for acoustic human-machine inter-

faces a beam of increased sensitivity has to be steered towards the

desired and possibly moving source [1, 2, 3]. The polynomial beam-

forming (PB) method proposed in [4] enables dynamic and easy

steering towards any desired look direction in a predefined angular

range. It was also shown in [5] that PB can be combined efficiently

with an acoustic echo canceller (AEC) resulting in AEC processing

that is independent of beamsteering.

PB with an array of sensors is depicted in Fig. 1 and consists of

two parts: P +1 fixed filter-and-sum units (FSUs) and a polynomial

postfilter (PPF) of order P . The impulse response of the FIR filter

of length L which processes the m-th microphone signal in the p-th

FSU is denoted as wp(m, l) with l = 0, . . . , L−1. The PPF weights

and combines the different FSU output signals ŷp(n) and, hence,

the different FSU responses. The advantages of this method are that

there is a fixed set of coefficients wp and the steering direction of the

beam is controlled by a single scalar D. Note that for P = 0 a single

beamformer steered towards one look direction is obtained.

The original method proposed in [4] for designing the filters

leads to noise sensitive beamformers and therefore we proposed a

method in [6] which allows full control of the robustness of the poly-

nomial beamformer design by applying a quadratic constraint on the

white noise gain (WNG), which is a commonly used measure for the

robustness of beamformer designs [7]. Other authors [8] have also

proposed methods for robust designs. While the application of con-

straints is necessary for practically relevant designs it also reduces

the number of degrees of freedom for the design.
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Fig. 1. Polynomial beamforming with an array of sensors

Typically, the PB is designed with prototype look directions

(PLDs) distributed over the entire steering region, i.e., between

[0◦, φmax], where φmax = 180◦ and φmax = 360◦ are the maxi-

mum steering angles for linear and circular arrays, respectively. The

range over which the PLDs are distributed is termed PLD range here.

The angular spacing between the PLDs has a direct bearing on the

performance of the PB designs, i.e., large angular distances between

PLDs lead to inferior performance in the adjoining angular regions.

Therefore, in order to enhance the performance of PB designs, the

angular distance between the PLDs should be reduced while still en-

suring that steering across the entire steering region is still possible.

It should be noted that simply increasing the number of PLDs in or-

der to have a finer sampling grid over the entire steering region is

often undesirable because this necessitates an increase in the PPF

order P , which corresponds to an increase in the number of FSUs.

Lai et al., [8] proposed a method for enhancing the performance

for uniformly spaced spiral arrays. The authors showed that it is

sufficient to design the PB for uniform spiral arrays with the PLD

range restricted to [0◦, 360◦/M ], where M is the total number of

sensors, as opposed to [0◦, 360◦]. Steering the beam outside this

range is achieved by rotating the sets of filters to the corresponding

microphones [8].

In this paper a method which is more general and is applicable

to any type of symmetric array for robust polynomial beamformer

design is presented. The major advantage of this method over that

proposed in [8] is that it is applicable for a larger set of symmetric

arrays and it is capable of providing comparable spatial selectivity

without compromising the robustness of the resulting beamformer.

Although the beamforming design is applicable to directional

sensors and arbitrary source positions, we use the following com-

1978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



mon assumptions for beamforming designs for clarity: waves prop-

agate in a free field, the sources are located in the farfield relative to

the array, and all sensors are omnidirectional. Design examples for

symmetric linear and circular arrays are presented.

2. POLYNOMIAL BEAMFORMER

A beamformer is characterized here by the beamformer response

which describes the wavefield in the farfield produced for a given

complex harmonic signal with frequency ω as parameter. The re-

sponse of a polynomial beamformer for an array with M sensors, as

depicted in Fig. 1, is given by

BD(ω, φ) =
P∑

p=0

Dp

M∑

m=1

Wm,p(ω)gm(ω, φ), (1)

where Wm,p(ω) =
∑L−1

l=0 wp(m, l) exp(−jlω), gm(ω, φ) is the

response of the m-th sensor located at position rm to a plane wave

with frequency ω traveling in the direction φ, L is the FIR filter

length, and D denotes the steering direction. φ is the azimuth angle

in a three-dimensional right-handed orthogonal coordinate system

and elevation θ = 90◦, i.e., φ lies in the Cartesian x− y plane.

For introduction we briefly rederive the cost function of [6]. A

desired frequency-invariant response Bdes(φ, φdes) is defined whose

main beam points to the desired look direction φdes. Consider an

unconstrained least-squares beamformer which optimally approxi-

mates multiple desired responses, Bdes,i(φ, φdesi), i = 0, . . . , I−1,

each with a different look direction, by BDi
(ω, φ), Di = (φdesi −

φmax/2)/(φmax/2), in the least-squares sense. Note that φdesi are

the PLDs which are typically uniformly distributed over the en-

tire steering range. Typically, a numerical solution is obtained

by discretizing the frequency range into Q frequencies ωq , q =
0, . . . , Q−1, the angular range into K angles φk, k = 0, . . . ,K−1,

and solving the resulting set of linear equations numerically. The

beamformer design problem then reads [6]:

Bdes,i(φk, φdesi)
!
=

P∑

p=0

Dp
i

M∑

m=1

Wm,p(ωq)gm(ωq, φk). (2)

Reformulating (2) in matrix notation the resulting beamformer de-

sign problem reads:

min
Wf (ωq)

I−1∑

i=0

‖G(ωq)Wf(ωq)di − bdesi‖
2
2 ∀q, (3)

where bdesi = [Bdes,i(φ0, φdesi), . . . , Bdes,i(φK−1, φdesi)]
T ,

[G(ωq)]km = gm(ωq, φk), [Wf(ωq)]mp = Wm,p(ωq), di =
[D0

i , . . . , D
P
i ]T , and [· ]T denotes the transpose.

Reformulating the problem and adding robustness and dis-

tortionless response constraints, a robust polynomial beamformer

(RPB) design can be obtained by solving [6]

min
wf (ωq)

‖G(ωq)wf(ωq)− bdes‖
2
2

subject to

a
T
i (ωq)Diwf(ωq) = 1

|aT
i (ωq)Diwf(ωq)|

2

‖Diwf(ωq)‖22
≥ γ

∀i = 0, . . . , I − 1, (4)
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Fig. 2. Exploiting array symmetry for steering a DSB with φ2 =
180◦ − φ1; Steering to a) φ1 and b) φ2

where G(ωq) = [G(ωq)D0, . . . ,G(ωq)DI−1]
T , wf(ωq) =

[W1,0(ωq), . . . ,W1,P (ωq), . . . ,WM,P (ωq)]
T , Di = IM ⊗ d

T
i ,

ai(ωq) = [g1(ωq, φdesi), . . . , gM (ωq, φdesi)]
T , and bdes =

[bT
des0

, . . . ,bT
desI−1

]T . ⊗ denotes the Kronecker product, IM is an

M ×M identity matrix, and γ is the lower bound for the WNG. (4)

can straightforwardly be solved using CVX, a package for specifying

and solving convex optimization problems [9, 10].

3. EXPLOITING ARRAY SYMMETRY

In PB designs the PLDs, φdesi , are typically uniformly distributed

over the entire steering range in order to be able to steer the beam

to any desired direction, i.e., the PLD range is equal to the entire

steering range. It should be noted that the PLDs do not necessarily

have to be uniformly distributed, however this would lead to larger

errors in some areas and smaller ones in others. The idea behind this

work is to limit the PLD range to only a part of the entire steering

range by exploiting array symmetry. The same number of PLDs can

then be used to cover a smaller angular region. As a consequence,

the angular distance between these prototype look directions, which

act as sampling points for interpolation, is decreased.

Although the following considerations are valid for all symmet-

ric arrays, for the sake of simplicity let us first consider a symmetric

linear array and a delay-and-sum beamformer (DSB).

Assume a source S1 generates a plane wave which impinges on

the array from φ1 as depicted in Fig. 2a. A beam can be steered in

this direction by computing the delay elements as

τm(φ1) =
rm
c

cosφ1, (5)

where rm is the position of the m-th sensor and c is the wave prop-

agation speed. The beam can be steered toward another source S2

located at φ2 = 180◦ − φ1 by simply mirroring the delay elements

about the center of the array (x = 0) as depicted in Fig. 2b. Thus,

only the delays τm(φ) for φ ∈ [0◦, 90◦] need to computed and mir-

roring can be applied to steer beyond 90◦.

Although this result is trivial, we can apply exactly the same

concept to limit the PLD range of a PB design for symmetric linear

and circular arrays. Let the number of symmetry planes present on
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an array be denoted by β. In the case of a polynomial beamformer

design for a symmetric linear array β = 1 and φmax = 180◦. The

PLD range can now be limited to [0◦, 90◦] instead of [0◦, 180◦].
Steering beyond 90◦ is achieved simply by mirroring the filters.

Without loss of generality, let us assume one of the symmetry

planes lies along the x-axis. In the case of a polynomial beam-

former design for a symmetric circular array with non-uniform spac-

ing, β ≥ 1 depending on the sensor positions and φmax = 360◦. If

β = 1 the PLD range can now be limited to [0◦, 180◦] instead of

[0◦, 360◦]. Steering beyond 180◦ is achieved simply by mirroring

the filters about the symmetry plane. If β = 2 the PLD range is fur-

ther limited to [0◦, 90◦] and steering is achieved by mirroring about

the two symmetry planes.

In the case of a circular array with M uniformly spaced sensors,

which is a special case of a symmetric circular array, β = M . In

this case the PLD range can be further limited to [0◦, 360◦/(2M)]
which is a significant reduction compared to the original range of

[0◦, 360◦].

From the considerations above the maximum angle that should

be considered in the PLD range for symmetric arrays is equal to

φPLD =
φmax

2β
. (6)

An RPB design which exploits array symmetry is termed RPBS. It

should be noted that if no symmetry exists for an array the PLD

range has to cover the entire steering range.

4. EVALUATION

The proposed RPBS design was evaluated for microphone array

broadband beamforming, by investigating symmetric linear and cir-

cular array geometries. FIR filters wp(m, l) with length L =
512 were used to approximate the frequency response vectors

[Wm,p(ω0), . . . ,Wm,p(ωQ−1)] in the least squares sense. The main

lobe of the desired frequency response was always defined with a 3-

dB beamwidth of 20 degrees. Lower and upper cut-off frequencies

of 0.3 kHz and 3.4 kHz, respectively, were chosen with telephone

speech signal capture in mind. A sampling frequency of 8 kHz, PPF

order of P = 3 and a WNG lower limit of γ = 0.001 were chosen.

The mean squared error (MSE) between the desired responses

Bdes(ϑk, φdesi) and the actual responses BD(ωq, φk) is computed

for 5◦ steps in φdes. The MSE is given by

MSE =

71∑

i=0

Q−1∑

q=0

K−1∑

k=0

(|BD(ωq, φk)| − |Bdes(φk, i5
◦)|)2

72QK
.

Each of the design examples is represented by a figure containing

multiple subfigures depicting the beamformer’s beampattern, WNG,

and magnitude response (MR) in the desired look direction, respec-

tively.

The RPBS is first evaluated for a symmetric linear array (β = 1)

consisting of seven microphones with a uniform spacing of 0.025m.

Note that a regular spacing is not required as long as the arrangement

is symmetric. The PB designs are jointly optimized for I = 6 uni-

formly distributed PLDs. In case of the RPB design, the PLD range

is [0◦, 180◦], i.e., the PLDs are [0◦, 36◦, 72◦, 108◦, 144◦, 180◦].
This range is reduced in the RPBS design to [0◦, 90◦] by exploiting

the array symmetry, i.e., the PLDs are [0◦, 18◦, 36◦, 54◦, 72◦, 90◦].
Fig. 3 depicts the results for φdes = 120◦ for both the RPB and

RPBS designs. Both designs were not optimized for this look direc-

tion. The beampatterns clearly show that the RPBS design achieves
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Magnitude responses

superior spatial selectivity compared to the RPB design by exploit-

ing the symmetry of the array. The MSE of 0.04 for the RPBS de-

sign is significantly smaller than 0.1 obtained for the RPB design.

The WNG is constrained successfully in both designs. Although the

magnitude response deviations from 0 dB for both designs are rela-

tively small, the variations are smaller for the RPBS.

Next, we consider a symmetric circular array with six

non-uniformly spaced microphones (β = 1) and radius

r = 0.03m. The six microphones are placed at φmic =
[0◦, 50◦, 140◦, 180◦, 220◦, 310◦]. The PB designs are opti-

mized for I = 6 uniformly distributed PLDs, which are

[0◦, 71.8◦, 143.6◦, 215.4◦, 287.2◦, 359◦] for the RPB design and

[0◦, 36◦, 72◦, 108◦, 144◦, 180◦] for the RPBS.

Fig. 4 depicts the results for φdes = 250◦ for both designs. Both

designs were not optimized for this look direction. The beampat-

terns show that both designs give a frequency-invariant main beam.

However, the RPBS design results in superior spatial selectivity due

to the narrower beam and the lower sidelobes. Note that due to the

microphone placement, there is a reduction in spatial selectivity for

both designs in the angular region about 0◦ and 180◦. The MSE

of 0.07 for RPBS design is also significantly smaller than 0.21 ob-

tained for the RPB design. The WNG is constrained successfully.

The deviations in the magnitude response are also smaller for the

RPBS design.

Finally, we evaluate the performance of the RPBS design for

a symmetric circular array with 6 uniformly spaced microphones

(β = M ) and a radius r = 0.03m. The microphones are placed

at φmic = [0◦, 60◦, 120◦, 180◦, 240◦, 300◦]. We compare the per-

formance with the method based on rotating filters proposed by Lai

et al., [8] (here termed RPBL design) where the PLD range is re-

duced by a factor of M . Our method reduces the PLD range by a

factor of 2M . As the PLD range is significantly reduced we use

I = 4 uniformly distributed PLDs, which are [0◦, 20◦, 40◦, 60◦] for
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the RPBL design and [0◦, 10◦, 20◦, 30◦] for the RPBS design.

Fig. 5 depicts the results for φdes = 95◦ for both the RPBL and

RPBS designs. Both designs were not optimized for this look di-

rection. The beampatterns show very similar results. This is further

supported by the fact that both designs have an MSE of 0.06. The

differences in the designs become clearer by considering the WNGs

and magnitude responses. It is clear to see that the WNG of the

RPBL design has larger deviations than the RPBS and even violates

the WNG constraint since it goes below −30 dB. The magnitude

response deviations of the RPBS design are also smaller. Although

the results for the RPB are not shown here due to space restrictions,

they are significantly worse in terms of spatial selectivity and devia-

tions in the WNG and magnitude response, due to the large angular

distance of 120◦ between PLDs.

5. CONCLUSION

A novel method for the design of robust polynomial beamformers

which exploits array symmetry has been presented. The beamformer

design has been shown to offer superior spatial selectivity and im-

prove the adherence to the WNG and distortionless response con-

straints compared to existing design methods.
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