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ABSTRACT

Lattice-based approaches have been widely used in spoken docu-
ment retrieval to handle the speech recognition uncertainty and er-
rors. Position Specific Posterior Lattices (PSPL) and Confusion Net-
work (CN) are good examples. It is therefore interesting to derive
improved model for spoken document retrieval by properly integrat-
ing different versions of lattice-based approaches in order to achieve
better performance.

In this paper we borrow the framework of ’learning to rank’ from
text document retrieval and try to integrate it into the scenario of
lattice-based spoken document retrieval. Two approaches are con-
sidered here, AdaRank and SVM-map. With these approaches, we
are able to learn and derived improved models using different ver-
sions of PSPL/CN. Preliminary experiments with broadcast news in
Mandarin Chinese showed significant improvements.

Index Terms— Spoken Document Retrieval, SVM-map, AdaRank,
PSPL, Confusion Network

1. INTRODUCTION

With the rapid increase of multimedia content over the Internet,
which often carries speech as the core information, the demand
for spoken document retrieval has been growing very fast in recent
years. Due to the inevitable uncertainty and errors in speech recog-
nition especially under adverse environments, most state-of-the-art
spoken document indexing methods have been based on multiple
alternatives of recognition output, probably with some efficient
representation. Good examples include Position Specific Posterior
Lattices (PSPL) [1, 2], Confusion Network [3] and other similar
variations. They are referred to as lattice-based approaches in this
paper. Also, subword units have been widely used in spoken docu-
ment retrieval to handle OOV and rare words as well as erroneous
transcriptions. It has been found [2, 4] that different lattice-based
approaches based on words or different subword units usually offer
different performance in different situations, and proper combina-
tion of some of them is usually helpful. For example, in Mandarin
Chinese it was found the linear combination of word-based and
character-based PSPL scores is better than either case alone. It is
therefore reasonable to try to derive an improved model by properly
integrating scores from the various lattice-based approaches (PSPLs,
CNs, etc.) based on words and various subword units in order to
achieve better retrieval results.

On the other hand, in text document retrieval area the concept
of ’learning to rank’ have been successfully applied to derive bet-
ter retrieval approaches. For example, the approaches using ensem-
ble learning [5] and discriminative model [6]. As an example, Jun

Xu et al. proposed a learning algorithm for ranking on the basis of
boosting, referred to as AdaRank [7]. Yisong Yue et al. also per-
formed the learning using Support Vector Machines, referred to as
SVM-map [8]. These approaches are different from other previously
proposed methods such as RankBoost [5] and Ranking SVM [9], be-
cause they tried to optimize some specially designed loss functions,
which are directly related to the desired performance measures for
retrieval. But these approaches were developed for text document
retrieval, quite different from the scenario of spoken document re-
trieval considered here.

In this paper, we try to integrate the AdaRank [7] and SVM-map
[8] learning algorithm into the framework of lattice-based spoken
document retrieval approaches such as those based on PSPL and
CN. Specifically, we use AdaRank and SVM-map learning algo-
rithms to learn the weights for the scores generated from a variety
of PSPL/CN-related indexing methods. Very encouraging improve-
ments in performance were obtained.

2. GENERAL FRAMEWORK

Here the spoken document retrieval problem (in testing) is defined
as, given any query, returning a list of desired documents in descend-
ing order of the relevance scores calculated with a ranking function.
The objective of learning is then to construct such a ranking function
(in training) based on some criteria. Such a ranking function have an
input space X and an output space Y .

Let the input space X be the set of all possible queries, or an
infinite set X = {q1, q2 · · · }, where qi is a query. The output space
Y , on the otherhand, consists of all possible ranks over a corpus (a
rank denotes a permutation of all the documents in the corpus), Y =
{r1, r2, · · · , rl}, where each element in Y is a rank and l denotes
the number of ranks. Assume there exists a total order among the
ranks, r1 � r2 � · · · � rl−1 � rl, where ’�’ denotes a preference
relationship, or r1 is preferred than r2 and so on.

In training, a set of training queries Q = {q1, q2 · · · , qm}
is given. Each query qi is associated with a list of retrieved
documents di = {di1, di2, · · · , di,n(qi)} obtained with a spe-
cific retrieval approach (or ranker), and a list of labels yi =
{yi1, yi2, · · · , yi,n(qi)}, where n(qi) denotes the size of the lists
di and yi, dij denotes the jth document in di, and yij denotes
the order of document dij in the reference (or true) rank labels
yi, yij ∈ {1, 2, · · · , n(qi)}. Thus the training set can be rep-
resented as S = {(qi,di,yi)}

m
i=1. On the other hand, a feature

vector �xij = Φ(qi, dij) can be created for each query-document
pair (qi, dij),i = 1, 2, · · · , m; j = 1, 2, · · · , n(qi), including many
different relevant scores for (qi, dij) obtained from many different
retrieval approaches (rankers) as many features [5].
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With the above, the goal here is to learn a function f : X →
Y . For any given query qi, the output f(qi) is a rank, which is
a permutation or ordered list of retrieved documents π(qi,di, f),
where di is the correspoding list of n(qi) retrieved documents. The
goal of learning here is to minimize a loss function representing the
disagreement between the output permutation π(qi,di, f) and the
reference (or true) rank yi fordi, for all queries. Such a loss function
may be expressed by Δ : Y × Y → R, where Δ(yi, π(qi,di, f))
quantifies the loss for the output π(qi,di, f) if the correct rank is yi.
The loss function used in the work here is ”1 - E(yi, π(qi,di, f))”,
where E(yi, π(qi,di, f)) is the performance measure evaluated for
yi and π(qi,di, f). Here E(yi, π(qi,di, f)) is taken as the mean
average precision (MAP). The upper bound of this loss function will
be directly minimized below by two learning algorithms: AdaRank
and SVM-map.

Table 1. Notations and explanations

Notations Explanations

qi ∈ Q ith training query
di = {di1, di2, · · · , di,n(qi)} List of retrieved documents for qi

yi = {yi1, yi2, · · · , yi,n(qi)} Reference (true) rank list for qi

and di

S = {(qi,di,yi)}
m
i=1 Training set

π(qi,di, f) Permutation of document in
di given qi returned by f

Δ(yi, π(qi,di, f)) Loss function
E(yi, π(qi,di, f)) ∈ [−1, +1] Performance Measure
Φ(qi, dij) Function to extract features

3. ADARANK

Based on the concept of AdaBoost, AdaRank [7] constructs the rank-
ing function by integrating a group of weak rankers. It is adaptive
in the sense that, in each iteration, the subsequent ranker constructed
are tweaked in favor of those instances misranked by the previous
rankers. As mentioned above, AdaRank here directly optimize the
upper bound of the loss function ”1 - E(yi, π(qi,di, f))”, or ”1 -
MAP” in this work. The complete algorithm is summarized here [7].
Given a training set S = {(qi,di,yi)}

m
i=1, we first set the number of

iterations T . In each iteration t AdaRank then creates a weak ranker
ht(t = 1, · · · , T ). At the end of iteration T , it outputs a ranking
function fT by linearly combining all the weak rankers obtained.

At each iteration t, AdaRank maintains a weight distribution
Pt(i) over all the queries qi in the training set. This distribution
plays the same role as the weight distribution of AdaBoost. Initially,
AdaRank sets equal weights to all the queries, or P1(i) = 1

m
. At

each iteration t, it increases the weights for those queries that are
not ranked well by the function created so far, or ft. As a result,
the learning in the next iteration t + 1 will be focused on the cre-
ation of a weak ranker that can work on the ranking of those ’hard’
queries. At each iteration t, a weak ranker ht is constructed based on
the training set with the weight distribution Pt(i). In this paper, we
consider the scores of various lattice-based approaches using words
or various subword units as candidates,

and select the one giving the best weighted performance over all
queries as the weak ranker constructed at iteration t.

ht = arg max
xk

mX

i=1

Pt(i)E(yi, π(qi, di,xk)) , (1)

where xk denotes a ranking function using the score of the kth

lattice-based indexing methods,
Once a weak ranker ht is found, AdaRank chooses a weight

αt > 0 for the weak ranker [7]. Intuitively, αt measures the impor-
tance of ht. A ranking function ft is then created at each iteration t
by linearly combining the weak rankers obtained so far h1, · · · , ht

with weights α1, · · · , αt, ft is then used for updating the distribu-
tion Pt+1(i) (we made some modifications on the original formula
here). The complete algorithm is listed below.

Algorithm 1 AdaRank Learning Algorithm
1: Input: S = {(qi, di, yi)}

m
i=1 and parameters E and T

2: Initialize P1(i) = 1
m
.

3: for t = 1, · · · , T do
4: Create weak ranker ht using Eq(1).
5: Choose αt

αt = 1
2
·

P
m

i=1
Pt(i){1+E(yi,π(qi,di,ht))}P

m

i=1
Pt(i){1−E(yi,π(qi,di,ht))}

6: Create ft

ft(q) =
tX

k=1

αkhk(q)

7: Update Pt+1

Pt+1(i) =
Pt(i)exp{−E(yi, π(qi,di, ft))}Pm

j=1 Pt(j)exp{−E(yj, π(qi,di, ft))}
8: end for
9: Output ranking model: f(q) = fT (q) .

4. SVM-MAP

The goal here is to rank the documents by their relvance to the query.
A similarity function comparing different ranks was proposed ealier
[7, 8], which is helpful in achieving this goal using Support Vec-
tor Machine (SVM). With this similarity function, we can learn a
discriminative function (a hyper plane in SVM) to separate the best
rank from other ranks in the output space Y . In this way, the algo-
rithm SVM-map [8] is not only armed with the power of SVM, but
able to directly optimize the upper bound of the loss function here, 1
- MAP. Some other loss functions were also discussed [10].

The goal of SVM-map is to learn a vector w consisting of the
weights for different features in the feature vector �xij extracted by
Φ(qi, dij). In this way, the output of the ranking function for a query
qi, f(qi) is simply a rank based on the relevance scores w · �xij . In
the work here, we use the scores from the various lattice-based ap-
praoches based on words or various subword units as the features
in �xij . We first define the similarity function F (r, qi,di;w) as
the similarity between any rank r in the output space Y and the
permutation obtained with the weight vector w given query qi, list
of retrieved documents di and the relevance score w · �xij . The
optimization problem of SVM-map can then be written as follows:

min
w,ξi≥0

{
1

2
‖w‖2 +

C

m

mX

i=1

ξi}, (2)

s.t. ∀i,∀r ∈ (Y − yi)

F (yi, qi,di;w) ≥ F (r, qi,di;w) + Δ(yi, r) − ξi ,

where yi is the reference (true) rank, r is any other rank, Δ(·, ·)
is the loss function mentioned previously, and the ξi and C are the
slack variables and the trade-off parameter of SVM [7].
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The above optimization problem can be considered as minimiz-
ing the following:

X

i

max
r∈Y−yi

(Δ(yi, r)−

(F (yi, qi,di;w) − F (r, qi,di;w))) + μ‖w‖2 (3)

Minimizing Equation (3) above actually means that we try to min-
imize the loss function Δ(yi, r) while maximizing the margin be-
tween the similarity functions for the true rank yi and other ranks r.
The term μ‖w‖2 is included in all SVM formulation. Equation (3)
was also proved as the upper bound of ”1 - MAP” [11], so as long
as we minimize Equation (3), the rank based on the relevance score
w · �xij is the best rank.

Although the optimization problem in Equation (2) has a huge
number of constraints, an approximate solution can be found with
an algorithm by selecting a set of active constraints from all the con-
straints [8, 10]. In this algorithm, the most violated constraint is
found in each iteration to join an active constraint set, until no more
new constraints can be found to join the active constraint set.

5. EXPERIMENT

5.1. Experimental Setting

The corpus used in the experiments were the Mandarin broadcast
news stories collected daily from local radio stations in Taiwan from
August to September 2001. We manually divided these stories into
5034 segments, each with one to three utterances and taken as a
seperate document to be retrieved. From the bigram lattices of these
segments we generated the corresponding word-based PSPL/CN
and subword-based PSPL/CN using Chinese characters and Man-
darin syllables. By altering the beam width in generating the bigram
lattice, four lattices L1, L2, L3 and L4 were generated, each with
averaged 19.89, 30.27, 46.75 and 72.77 edges per spoken word
respectively, from which PSPL/CN of different depths and sizes
based on words, characters and syllables were obtained. A lexicon
of 62K words was used. The acoustic models included a total of
151 intra-syllable right-context-dependent Initial-Final (I-F) models
trained with 8 hours of broadcast news stories collected in 2000.
The recognition character accuracy obtained for the 5034 segments
was 75.27% (under trigram one-pass decoding).

200 text test queries were generated by manual selection from
a set of automatically generated candidates. The candidates were
patterns of 1-3 words which appeared at least 5 times in the 5034
segments. 44 of the 200 queries included OOV words and catego-
rized as OOV queries, while the remaining 156 were in-vocabulary
(IV) queries.

We implemented the AdaRank learning algorithm for AdaRank,
and used the SV Mmap developed by Yisong Yue and Thomas Fin-
ley [12] for SVM-map. Tradeoff parameter of SVM-map was em-
pirically set to 104. AdaRank requires different indexing methods as
the weak rankers, and SVM-map requires the scores of weak rankers
as features. We thus implemented word-based, character-based and
syllable-based PSPL/CN (3x2), each with the accumulated probabil-
ity of uni-, bi- and tri-grams respectively (3), so a total of 18 (6x3)
different indexing methods.

All retrieval results presented here are calculated in terms
of Mean Average Percision (MAP) evaluated with the standard
trec eval package used by the TREC evaluations. Both AdaRank
and SVM-map need queries to train the ranking function. Consid-
ering the limited number of available queries here, we performed

Fig. 1. Ranking accuracies of the 18 indexing methods (weak
rankers) by CN(left, L1−L3) and PSPL(right, L1) when used alone

Fig. 2. Ranking accuracies of the two baselines, AdaRank and SVM-
map

4-fold cross validation on the 200 text test queries in the AdaRank
and SVM-map experiments (i.e., training with 150 queries and test-
ing with 50 queries, repeating four times and averaging the results.)

5.2. Experimental Results

We first evaluate the MAP score for each of the 18 indexing method
(weak rankers) alone, and show the results in Figure 1, where the
left part show the 9 CN-based methods for three lattice sizes L1,
L2, L3. It can be found the trend is very consistent and there-
fore the results for L4 is left out here. On the right part of Fig-
ure 1 is the 9 PSPL-based methods for L1 alone. The trend is still
very similar to that of CN-based methods, although slightly differ-
ent. From this figure, we can see that character-based bi-gram of
both CN and PSPL (CN-char-2, PSPL-char-2), and syllable-based
bi-gram of both CN and PSPL (CN-syl-2, PSPL-syl-2) are the top 4
when a single indexing method is considered. This is reasonable be-
cause the majority of words in Chinese includes two mono-syllabic
characters, or have two characters pronounced as two syllables. Al-
though many homonym characters may share the same syllable, very
small number of homonym bi-character words share the same bi-
syllablic pattern. So the bi-gram of these two subword units (char-
acters/syllables) carry plenty of information.

The results of AdaRank and SVM-map are shown in Figure 2,
for the four lattice sizes L1-L4. We use 2 baselines here as first
two bars in each set: baseline 1 is the best single indexing method
(weak ranker) out of the 18 mentioned above, and baseline 2 is the
uniform integration of the 18 weak rankers, each weighted by 1

18
.

The results of AdaRank and SVM-map are shown as the 3-rd and 4-
th bars in each set in Figure 2. We see in general baseline 2 is better
than baseline 1 (except for L4, in which two large lattice size may
produce too many noisy features, but AdaRank is always better, and
SVM-map is high above, roughly 6% absolute higher than baseline
2. The power of SVM was verified here.
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Fig. 3. weight vectorw learned by SVM-map for L1 lattice size and
fold-1

5.3. Further Analysis

Since SVM-map achieved the best results, we further analyze the
weights learned by the SVM-map here. The weights learned by
L1-fold1 (out of the 4-fold cross validation) are plotted in Figure
3 (the results are very similar for other lattice sizes and folds). We
can see that the highest weight went to the character-based bigram
of CN (CN-char-2), the best indexing method in Figure 1 if con-
sidered alone. The next 4 highest weights went to syllable-based
and character-based trigram of both CN and PSPL. First, since many
homonym characters with different meanings may share the same
syllable in Mandarin Chinese, clearly characters carry more precise
information than syllables. This is why character-based bi-gram was
chosen to give the highest weight, out of the 4 subword unit based
bi-grams which are best if considered alone in Figure 1. Once it is
chosen, the other 3 becomes less important since they carry simi-
lar information. Also, although characters carry more precise infor-
mation than syllables, syllables have much higher recognition accu-
racies than characters (since many characters may share the same
syllable). As a result the information carried in syllables and char-
acters actually complement each other. Also the subword based tri-
grams very often extend beyond a word (the majority of Chinese
words are bi-syllabic or bi-character) which carry very useful infor-
mation. This is probably why the next 4 highest weights went to the
4 subword-based tri-grams.

It is interesting to note that there are three negative weights in
Figure 3. They are for word, character and syllable uni-grams re-
spectively. The MAP score would be degraded if these three in-
dexing methods were removed. So they made positive contributions
even if their weights are negative. One possible reason may be that
many of the bi- and tri-gram indexing methods have their indexing
features overlapping with each other, so many features were counted
repeatedly. These negatively weighted uni-grams then probably re-
duced such repetitions. Note that uni-grams may be much better
tools for reducing such repetitions than bi- or tri-grams.

As another analysis, we arbitrarily chose 3 indexing methods out
of the 18, combined them using the weights given by SVM-map to
generate a total of

`
18
3

´
= 816 sub-optimal rankers, and list the top

5 sub-optimal rankers in Table 2 (for L1 and fold-1). Note that with
only 3 weak rankers they are already much higher than baseline 2
in Figure 2, which is the uniform combination of all the 18 weak
rankers. Again this verifies the power of SVM-map.

Also, almost all of these top 5 sub-optimal rankers include a
good combination of different appraoches: one syllable-based, one
character-based, one word-based (for recognition accuracies, syll-
ble > character > word, for semantic information, word > char-
acter > syllable); one or two CN-based and the other PSPL-based;
uni-grams and tri-grams; units with lengths ranging from 1 syllable
(syllable/character-based unigrams) up to 6 syllables (word-based

tri-grams). Clearly the good combination of a variety of properties
for the different indexing methods leads to the high performance. In-
terestingly, each of these top 5 sub-optimal rankers also includes a
weak ranker with negative weight. Clearly the negative weights are
important.

Table 2. The top 5 sub-optimal rankers by three different methods

Rank Method 1 Method 2 Method 3 MAP

1 syl-CN-3 char-PSPL-1 word-PSPL-3 0.8166
2 syl-CN-3 char-PSPL-1 word-CN-3 0.8166
3 syl-CN-3 word-PSPL-1 word-PSPL-3 0.8161
4 syl-CN-3 word-PSPL-1 word-CN-3 0.8161
5 syl-CN-3 syl-CN-1 word-PSPL-3 0.8153

6. CONCLUSION

In this paper we borrow the frameword of ’learning to rank’ from
text document retrieval to be used with the lattice-based spoken doc-
ument retrieval approaches. This framework enables us to automati-
cally learn the proper weights when integrating different versions of
lattice-based indexing methods based on words or different subword
units. In preliminary experiments with broadcast news in Mandarin
Chinese, not only significant improvements were obtained, but it was
found that SVM-map learning algorithm always achieves better re-
sults than AdaRank learning algorithm.
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