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ABSTRACT

In this paper, we investigate the problem of mispronuncia-

tion detection by considering the influence of speaker and

syllables. Machine learning techniques are used to make our

method more convenient and flexible for new features, such

as syllables normalization. The experimental results on our

database, consisting of 9898 syllables pronounced by 100

speakers, show the effectiveness of our method by reducing

the average false acceptance rate (FAR) by 42.5% using data

set generated by model without adaptation to observation set

and reducing average FAR by 32.5% using data set generated

by model with adaptation to observation set.

Index Terms— Computer Aided Language Learning

(CALL), Automatic Mispronunciation Detection (AMD),

Machine Learning

1. INTRODUCTION
Computer Assisted Language Learning (CALL) has received

a considerable attention in recent years. As a part of CALL

system, automatic mispronunciation detection (AMD) [1, 2]

is regarded as an important tool since it provides realtime

feedback on pronunciations, which is very helpful for lan-

guage learners. Our work is focused on the AMD in Mandarin

which has roughly 2000 tonal syllables. Each syllable nor-

mally consists of three parts: an initial (mainly a consonant),

a final (mainly a vowel) and a tone. Pronunciation problem

on any of the parts is regarded as a mispronunciation.

Much progress has been made in AMD in Mandarin. In

the previous works, Franco et al. [2] used posterior proba-

bility scores based on Hidden Markov Models (HMM) and

log-likelihood ratio score given by Gaussian mixture models

for pronunciation error detection. Zhang et al. [3] proposed

scaled log-posterior probability (SLPP) as an improvement.

In addition to SLPP, some other features were also reported

effective. For example the speaker normalization [4] mea-

sures the average proficiency level of a speaker and provides

useful information for giving a final score. Different from all

these previous works, we propose in this paper to add a new

feature, the phone normalization, which will be shown later

in the paper to be very useful as well. However with more

∗joined in the work as an intern at Microsoft Research Asia.

and more features, currently there is not a ready-to-use prob-

abilistic framework to put theses features in, at least to our

best of knowledge. To handle the problem, some previous

work [4] took the way of using heuristical weighting factor to

utilize features. Unfortunately when given too many features,

constructing and tuning a good weighting factor function not

only very difficult but also very tricky, and furthermore, it

even cannot be determined whether a heuristic weighting fac-

tor function is good enough or not. Thus in this paper, we

try a novel way, which is to use machine learning methods to

learn the decision function since machine learning algorithms,

such as support vector machine [5], are theoretically sound,

relatively mature and always achieves optimal solutions with

respect to certain criteria, for example Naive Bayes achieves

maximum a posterior solution and SVM achieve maximum

margin solution. Experimental results demonstrate the effec-

tiveness of applying machine learning methods in AMD.

2. IMPROVING MISPRONUNCIATION DETECTION

In this section, we will describe our methods that improve au-

tomatic mispronunciation detection (AMD) from two aspects.

One aspect is to use more normalization techniques. In spe-

cific, the syllable normalization is introduced in this paper.

The other aspect is that we explicitly regard the AMD as a

classification problem, and use machine learning methods to

solve the problem.

2.1. Notations
To formally discuss the problem, we first introduce some

notations used in this paper. As a classification problem,

we have C = {c1, c2} be the target class that a syllable is

pronounced correctly (c1) or incorrectly (c2). We also have

the syllable set T = {t1, t2, · · · , t|T |}, the phone set R =
{r1, r2, · · · , r|R|} and the tone set V = {v1, v2, · · · , v|V|}.

As mentioned in Section 1, each syllable t has three parts:

the initial ti ∈ R, the final tf ∈ R and the tone tv ∈ V .

The speaker set is denoted as S = {s1, s2, · · · , s|S|}, and

the isolated syllable observation set is denoted as O =
{o1, o2, · · · , o|O|}. For any o ∈ O, so ∈ S stands for

the speaker who pronounced o, and to ∈ T stands for the

reference syllable of observation o. Finally, Os ⊆ O is the

set of observations spoken by speaker s ∈ S, and Ot ⊆ O is
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the set of observations whose reference syllables are t ∈ T .

2.2. Scaled Log-posterior Probability and Selective Max-
imum Likelihood Linear Regression
To access the goodness of pronunciation (GOP) score, scaled

log-posterior probability (SLPP) [3] has been reported as a

good parameter. In a HMM based speech recognizer, given

observation o and phone r, the SLPP is

P (r|o) = log

∑
l∈Lr

p(o|l)αp(r)
∑

l∈L p(o|l)αp(r)
(1)

where L = {l1, l2, · · · , l|L|} is all the paths in the lattice from

Viterbi decoding and Lr ⊆ L stands for the paths that include

phone r. The α is a scaling factor that scales the output score

more meaningfully spreading between 0 and 1. This SLPP

score is the raw score (feature) used in our method.

In the real scenario, it is possible that there are some mis-

matches between recognition model and the test data. To han-

dle this problem, selective maximum likelihood linear regres-

sion (SMLLR) [3] can be used. The basic idea is to select high

scored syllable for MLLR adaptation, which adapts good pro-

nounced syllables and at same time prevents the model from

adapting mispronunciations.

2.3. Normalization
As shown in [4], normalization is very effective in mispro-

nunciation detection. In this paper, besides using speaker nor-

malization, we also consider a new normalization technique:

the syllable (phone and tone) normalization. Since each syl-

lable has a initial, a final and a tone, and each normalization

is an average on them, for the simplicity of describing our

idea, here we write ti, tf and tv, which have been defined in

Section 2.1, together as syllable t, and more detailed form of

normalization that was used in our experiment will be shown

in Section 3.1. The speaker normalization Eq.(2) and syllable

normalization Eq.(3) is shown below

P (s) =
1

|Os|
∑

o∈Os

P (to|o) (2)

P (t) =
1

|Ot|
∑

o∈Ot

P (to|o) (3)

As shown in Eq.(2), the speaker normalization is the av-

erage value of a speaker’s all pronunciations. This can be

taken as an indication of this speaker’s speaking proficiency

level. The syllable normalization Eq.(3) can be understood as

a prior of the hardness of pronouncing a syllable. For exam-

ple, if the normalization value of a specific syllable is low, we

may assert this syllable is difficult to pronounce correctly and

that other people would have a high probability to pronounce

it incorrectly as well.

In contrast to previous work [4] that uses these normal-

ization as weighting factors to normalize P (t|o), in this paper

we investigate the normalization in a classification view. In

the classification view, raw score and normalization are con-

sidered as features. If without normalization, there is only

one feature P (t|o), which may not reflects the true level of

pronunciation o because of model mismatch or speaker varia-

tion, and therefore sometimes it is impossible to separate cor-

rect and incorrect pronunciations by only looking at P (t|o).
But if we add the normalization information such as speaker

normalization or syllable normalization, we take the speaker

proficiency level or the hardness of pronouncing the syllable

for consideration, which is very useful in making decision.

Take speaker normalization for example. If two obser-

vations o1, o2, where o1 is correctly pronounced and o2 is

mispronunciation, have the same SLPP score: P (to1 |o1) =
P (to2 |o2), it is impossible to separate them. But if we in-

corporate the speaker information, such as P (so1) > P (so2)
which means speaker so1 pronounces better than so2 on aver-

age, then we could separate them properly that o1 is correctly

pronounced and o2 is mispronunciation. These more features

make observations more separable from each other and thus

easier for classification.

2.4. Algorithm Overview
The algorithm is as follows. First we construct a data set

D = X×C from O, where X = {x1, · · · , x|X |}. For each ob-

servation o, there is a corresponding instance xo ∈ X , which

is a vector that take the raw score P (to|o) and the normaliza-

tion P (to), P (so) as features. With this data set D, we apply

machine learning method on them for training and testing.

The flowchart of our algorithm is given in Fig.1.

3. EXPERIMENT

3.1. Detailed Form of Raw Score and Normalization
Here we introduce the more detailed form of P (to|o) that

was used in our experiment. As introduced in Section 2.2,

for an pronunciation observation o, we scored on phones (the

initial and final of a syllable), therefore we had two scores

P ((to)i|o) and P ((to)f|o). Furthermore, in addition to the

reference phone, the decoded phone (which means the most

probable phone decoded by our model) was also calculated.

We denote the decoded initial and final phone as (to)di and

(to)df. As a result the detailed form of P (to|o) is four dimen-

sional, as shown in Table 1.

With P (to|o) changing to these more detailed forms, all

the normalization should also be changed to corresponding

more detailed forms. Speaker normalization and syllable nor-

malization are shown in Table 2. Finally, we added the tone

normalization P ((to)v), which was calculated similar to other

normalization. These 13 scores were our 13-dimensional fea-

tures that were used for classification.

initial phone final phone

reference score P ((to)i|o) P ((to)f|o)
decoded score P ((to)di|o) P ((to)df|o)

Table 1. four raw scores
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Observation O Raw score P (t|o)
Raw score P (to|o),

Normalization
P (so), P (to)

Data for Learning
Algorithm

Classification
Results

HMM Model
(with or w/o
adaptation)

Normalization
Using P (to|o), P (so),
P (to) as features for xo

Learning
Algorithm

Fig. 1. Algorithm Overview

speaker normalization

initial phone final phone

reference score P ((so)i) P ((so)f)
decoded score P ((so)di) P ((so)df)

syllable normalization

initial phone final phone

reference score P ((to)i) P ((to)f)
decoded score P ((to)di) P ((to)df)

Table 2. Speaker and syllable normalization

From our experiment, we found that the normalization

calculated on SLPP was not so reliable: the average FAR (de-

fined in Section 3.5) was reduced by 26.7% on the data gener-

ated by model without adaptation and reduced by 3.2% in the

data generated by model with adaptation, which is to say the

normalization using SLPP score have great improvement on

one data set and have small improvement on the other. Thus

in this experiment, we used more reliable expert score in the

train set instead. The general form (using syllable level deno-

tation) of speaker normalization Eq.(4) and syllable normal-

ization Eq.(5) using expert scoring is denoted using Pe, as

shown in the following

Pe(s) =
1

|Os,train|
∑

o∈Os,train

Expert(o) (4)

Pe(t) =
1

|Ot,train|
∑

o∈Ot,train

Expert(o) (5)

where Os,train is the set of observations in training set spoken

by s and Ot,train is the set of observations whose reference

syllable labels are t.
The detailed form of Pe is similar to P shown in Table 2,

and the only difference is to change the normalization from

using SLPP to using expert scoring in the training set.

3.2. Data Set
In our observation set O, 100 native speakers had been tested

and 9898 isolated syllables were pronounced in total. Profi-

ciency level, such as correctly pronounced or mispronuncia-

tion, was given by two expert raters with national certificates.

Among all the spoken syllables, 6285 were pronounced cor-

rectly and 3613 were mispronunciations.

Using our observation set O and their corresponding

target class, we generated the data sets for our experiment

as shown in Fig.1. To get access to the raw score P (to|o),
we used the Multi-space distribution Hidden Markov Model

(MSD-HMM) [6] model which was trained on another 8000

syllables. Since there were mismatches between those 8000

syllables and our observation set O, we also tried the MSD-

HMM model with SMLLR adaptation. Using the MSD-

HMM model and adapted MSD-HMM model, we generated

two set of raw scores on O and then generate two data sets.

3.3. Evaluation
As mentioned in the Section 2, machine learning techniques

are applied in learning the decision function. In our experi-

ment, we used SVM classifier with RBF Kernel for our task1.

The data set was randomly divided into 8 folders, and for

each of the 8 folders, we took this folder for training and used

the rest 7 folds for testing. The final result was the average

value of the 8 test results.

We define the following two measures, false rejection rate

(FRR) and false acceptance rate (FAR), as evaluation criteria.

FRR =
all mispronunciations that dected as correct ones

all the mispronunciations

FAR =
all correct ones that dected as mispronunciations

all the detect mispronunciations

To fully reflect the changing performance FAR/FRR with dif-

ferent thresholds (in the SVM case, it is parallel hyperplanes),

Detection-Error Tradeoff (DET) curve was used.

3.4. Experimental Result
We experimented our algorithm on two data sets and on dif-

ferent combinations of features:

• raw score with speaker normalization

• raw score with phone normalization

• raw score with tone normalization

• raw score with speaker, phone normalization

• raw score with speaker, phone and tone normalization

1We used the SVM Light [7] implementation
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(a) Results on data set generated by non adapted model
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(b) Results on data set generated by adapted model

Fig. 2. DET curve of AMD on two data sets.

our baseline, using the method in [3], was also experimented.

The experimental result is shown in Fig. 2. Comparing

the line “speaker, phone, tone” and the line “baseline”, we

observe a significant improvement when using all the normal-

ization on both data sets. When taking the individual normal-

ization and baseline for comparison, it can be concluded that

each normalization would give rise to some extends of im-

provement and the most prominent normalization is the tone

normalization. This is consistent with the statistics from the

data set that tones have different mispronunciation rates, as

shown in Table 3 (there are four Mandarin tones in all). It

should be noticed that the tone 3 have the most high percent-

age of mispronunciation, which is because of the hardness of

pronounce tone 3 correctly in Mandarin. This information can

be taken as a sort of prior and experimental results support the

idea of using this information.

tone 1 2 3 4

mispronunciation percentage 27% 29% 74% 29%

Table 3. Statistics on mispronunciation rate on each tone

Finally, when comparing the line with all normalization

and the line with all except tone normalization, we also ob-

serve an improvement. This shows that the tone normaliza-

tion could be combined with other nomalizations to obtain a

better performance.

3.5. Result Summary
When given a FRR, we can find the corresponding FAR. Since

the task of AMD in language learning requires to show a

small number of possible mispronunciations, we focuses on

the FAR when FRR is high. Therefor we uses the average

FAR, which is the average number of FAR when FRR taking

the value of 50%, 60%, 70%, 80% and 90%, to summary the

result. The result in average FAR is shown in Table 4. We can

see from the table that when using all the normalization, the

performance is greatly enhanced, reducing the average FAR

by 42.5% in the data set without adaptation and reducing the

average FAR by 32.5% in the data set with adaptation.

4. CONCLUSION
In this paper, we propose to use normalization from sylla-

ble aspects to improve automatic mispronunciation detection.

Machine learning method is utilized to make the final deci-

sion, not only avoids heuristics but also gets an extensible

used normalization w/o adaptation with adaptation

baseline 30.7 22.7

speaker 28.1 22.4

phone 28.7 21.1

tone 19.9 16.5

speaker,phone 26.2 20.2

speaker,phone,tone 17.6 15.3

Table 4. Experimental result summary in average FAR(%)

method for more normalization or features in the future. Ex-

perimental results support the effectiveness of the algorithm

by reducing the average FAR by 42.5% in the data set with-

out adaptation and reducing the average FAR by 32.5% in the

data set with adaptation.
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