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ABSTRACT

Children need to master reading letter-names and letter-
sounds before reading phrases and sentences. Pronunciation
assessment of letter-names and letter-sounds read aloud is
an important component of preliterate children’s education,
and automating this process can have several advantages.
The goal of this work was to automatically verify letter-
names spoken by kindergarteners and first graders in
realistic classroom noise conditions. We applied the same
techniques developed in our previous work on automatic
letter-sound verification by comparing and optimizing
different acoustic models, dictionaries, and decoding
grammars. Our final system was unbiased with respect to
the child’s grade, age, and native language and achieved
93.1% agreement (0.813 kappa agreement) with human
evaluators, who agreed among themselves 95.4% of the
time (0.891 kappa).

Index Terms— Children’s speech, pronunciation
verification, automatic reading assessment, letter-names

1. INTRODUCTION

Children’s future reading proficiency and their ability to
learn effectively through reading has been shown to be
correlated with the mastery of reading the names of the
letters (letter-names) and producing the sounds of the letters
(letter-sounds) at an early age [1]. Assessing children’s
skills in these reading tasks is an important element of early
education to confirm that the children are learning.

Automatic assessment of letter-sounds and letter-names
can have several advantages. The personalized assessment
required to properly score a child’s reading level takes one-
on-one time, which a teacher may not always be able to
provide. Furthermore, an automatic system may remove
some of the personal biases inherent in the judgment of the
child’s reading level and standardize the grading process.
In addition, automatic systems can provide teachers with a
fine-grained analysis of the child’s pronunciation, offering
them insight for future instructional planning.

This paper concentrates on automatically verifying
letter-names spoken by preliterate children, complementing
our previous work addressing the letter-sound task [2].
Please note that the letter-name verification task is not
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reduced to one of letter-name recognition. That is, we are
not interested in specifying which letter-name the child said,
but rather whether the letter-name pronunciation was read
acceptably. In most letter-name recognition research (an
application that arises, for example, when a person spells
aloud an out-of-vocabulary word), the intended letter is not
known ahead of time, but the assumption is that it is spoken
correctly [3-6]. For this paper, we know what letter-name
the child was prompted to say. The difficulty is robustly
detecting the innumerable ways a child could produce an
unacceptable pronunciation, while not penalizing a child for
acceptable pronunciation variations (such as nonnative
accent).

There are numerous engineering challenges in automatic
letter-name verification for children. Children’s speech has
high variability within and between speakers [7], and the
data used in this research was collected in noisy classrooms
from children with multiple language backgrounds. These
conditions make it difficult to train representative acoustic
models.  Furthermore, many of the Iletter-names are
acoustically similar (e.g., /eh m/ and /eh n/), and almost all
of them share at least a common phoneme (e.g., /b iy/, /c iy/,
/d iy/, /iy/, ljh iy/, /p 1y/, /t iy/, /v 1y/, and /z iy/). In addition,
there is no word or letter context for this isolated letter-
name reading task, so we cannot train language models, as
is typically done in letter-name recognition tasks when the
speaker is spelling real words [4].

We experimented with different acoustic models,
dictionaries, and decoding grammars with the goal of
attaining automatic letter-name verification with accuracy
that neared human agreement. Section 2 describes the data
we analyzed. Section 3 briefly describes our verification
method, which builds upon our previous work on automatic
letter-sound verification [2]. Section 4 shows the
experimental results, with a discussion following in Section
5, including an in-depth error analysis and comparison to
the letter-sound task and results. We conclude in Section 6.

2. CORPUS

We used data from the Technology-based assessment of
language and literacy (Tball) Project [8,9]. The Tball
corpus [10] was recorded in kindergarten to second grade
classrooms in the greater Los Angeles area. Typical
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background noise included speech from other children and
the teacher. The corpus contains both native English and
Spanish speakers; thus, we can expect certain pronunciation
trends, as described in [11]. All 26 English alphabet
characters were tested for the letter-name reading task. One
lowercase letter was displayed on a computer screen for a
maximum of five seconds before the next letter was shown.
These transition times were automatically recorded and used
to segment the files into single letter-name utterances.

We manually verified (accept/reject) 3508 letter-name
utterances, of which 25.1% were rejected. 23.4% of these
rejected utterances were due to the child saying nothing.
8.27% of all the utterances were marked as having at least
one disfluency (fillers, repetitions, and/or repairs). Table 1
shows performance across various demographics that were
provided for some of the children. Using the manual
annotations, we created a test set with 780 files (30 files per
letter-name) and a train set with the remaining 2728 files
(approximately 105 files per letter-name). The data were
partitioned so that the proportion of acceptable to
unacceptable pronunciations was the same between the train
and test set for each letter-name. To compute human
agreement statistics, three trained native speakers verified
the same 260 files (10 files per letter-name), randomly
selected from the test set. Mean pairwise evaluator
agreement was 95.38%, with kappa agreement of 0.8914.

Demographic Number | % Accepted
Gender Female 1820 72.36
Male 1582 77.81
K 3012 75.13
Grade " 420 70.48
Age 5 1897 78.12
6 556 76.80
Native Spanish 1203 72.98
Language | English 1151 82.71

Table 1. Children performance (based on manual verification)
across various demographics.  Bold numbers indicate the
difference in proportion is statistically significant (p < 0.05).

3. AUTOMATIC VERIFICATION

This section outlines how we trained different acoustic
models and designed various dictionaries and decoding
grammars for this verification task. These three
components each played a key role in attaining performance
nearing human agreement. We used the same verification
method in our previous work on automatic letter-sound
verification, which provided promising results [2].

3.1. Acoustic Modeling

We extracted the first 12 MFCCs plus energy and their
corresponding delta and delta-delta coefficients as features.
We modeled the letter-names at the phoneme-level since
this was the linguistic unit where most of the pronunciation
errors occurred. We trained 3-state monophone HMMs
with 16 Gaussian mixtures per state. Initial baseline models
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were trained on 12 hours of isolated word-reading data
(without letter-names), also recorded for the Tball Project.
A background model was trained on silent and background
noise portions of the utterances, and a single generic phone-
level “garbage” model was trained on all speech segments.
Five sets of acoustic models were iteratively trained directly
on the letter-name train set, as described in [2]. All feature
extraction and model training was done with HTK [12].

3.2. Dictionaries

A recognition dictionary that included all the acceptable
letter-name pronunciations served as a baseline dictionary.
This dictionary was not ideal since it did not take into
account the fact that we knew what letter-name the child
was prompted to say. For this reason, we also constructed
five additional dictionaries that included unacceptable letter-
name pronunciations from foreseeable categorical errors
(Table 2). We then produced 32 sets of verification
dictionaries through all 2° combinations of the five
categories (none, LS, PE, SI, ..., LS-PE, LS-SI, ..., all).
Each dictionary set contained a dictionary for each letter
with acceptable letter-name pronunciations and appropriate
unacceptable ones. We refer to the verification dictionary
set that did not include any unacceptable pronunciations as
the “none” set, and the one that included all the
unacceptable pronunciations as the “all” set.

Label Description # of Entries Examples
LS English letter-sounds 45 v: v/, /v ah/
PE Perceptual confusions 43 m-n, f-s, c-z
SI Sight confusions 21 b-d, p-q, 0-c
SP Spanish confusions 14 j: /hh ey/
SPLN | Spanish letter-names 28 d: /d ey/
Table 2. Description of the five unacceptable pronunciation

categories, with the corresponding number of entries and examples

3.3. Grammars

The difficulty in designing a good decoding grammar is
finding the correct balance between grammar simplicity and
decoding coverage. Ultimately, the goal of the grammar is
to constrain the recognizer and endpoint the letter-name
pronunciation. We tried four different grammar structures
in this paper (where | means “or,” { } means zero or more
repetitions, BG is background/silence, GG is garbage, and
TARGET is one of the entries in the dictionary being used):

1. {BG|GG} TARGET {BG |GG}

2. {BG|GG} TARGET|BG {BG |GG}

3. {BG |GG} TARGET |GG {BG |GG}

4. {BG|GG} TARGET|BG |GG {BG |GG}

3.4. Verification method

We tried all combinations of the verification dictionaries
and grammars on the #rain set to determine which were best.
If an acceptable pronunciation was recognized, the utterance



was deemed acceptable; otherwise, the pronunciation was
rejected.  Grammar 2 and the SI-SPLN verification
dictionary achieved the highest percent agreement with
manual annotations. Grammar 2 performed best, since it
was able to detect when the child said nothing, which
happened in almost a quarter of the rejected files. Several
verification dictionaries performed nearly as good as the SI-
SPLN dictionary set because the errors the children made
were letter-name specific. For this reason, we created a
final letter-specific verification dictionary set that included
the individual letter-sound dictionaries with the best
performance. From these findings on the train set, we chose
to only use a select set of dictionaries (recognition, none,
all, SI-SPLN, Iletter-specific) and grammar 2 on the test
data.

4. RESULTS

Figure 1 plots kappa agreement for all combinations, with
Table 3 providing percent and kappa agreement statistics for
the baseline and fourth iteration models.
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Fig. 1. Kappa agreement statistics on the test data when using
different acoustic models and dictionaries (“human” = human
kappa agreement, “rec” = recognition dictionary, and the other
plots show the results for select verification dictionary sets).

Method Baseline Models Iteration #4 Models
Acc (%) | Kappa | Acc (%) | Kappa

chance 75.13 0.0000 75.13 0.0000
recognition 78.21 0.5341 86.79 0.6852
none 87.44 0.6146 89.62 0.6918
all 78.85 0.5421 88.72 0.7306
SI-SPLN 89.62 0.7117 92.31 0.7837
letter-specific 90.51 0.7389 93.08 0.8128

Table 3. Performance using baseline and fourth iteration acoustic
models for various dictionaries on the test data using grammar 2

5. DISCUSSION

The acoustic models trained directly on letter-names (1-5)
performed better than the baseline acoustic models, which
suggests that the phonemes in spoken letter-names are
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different than ones within words. However, the baseline
acoustic models were able to provide a good alignment with
the letter-name data, since acoustic models 1-5 show very
little difference in performance. The dictionaries with the
most relevant unacceptable pronunciations (SI-SPLN, letter-
specific) performed best; having too many unacceptable
pronunciations (recognition, all) or too few (none) is less
ideal. The best combination (fourth iteration acoustic
models, letter-specific dictionary, and grammar 2) achieved
93.08% agreement with human labels, significantly higher
than chance (75.13%) but still significantly lower than inter-
evaluator agreement (95.38%), with both p<0.01.

5.1. Error analysis of letter-name results

Table 4 is the confusion matrix for the best overall
combination; the system was better at verifying good
pronunciations (95.9% accuracy) than rejecting bad ones
(84.5% accuracy). Table 5 shows the system was unbiased
with respect to grade, age, and native language. However,
the system agreed with human labels more often with males
than females, which may be due to the fact that the females
did worse than males for this particular corpus (Table 1).

Manual Accurac
CONFUSION Verification Y
- (%)
Reject | Accept
Automatic Reject 164 24 87.23
Verification | Accept 30 562 94.93
Accuracy (%) 84.54 95.90 93.08

Table 4. Confusion matrix for the best combination

Demographic #intest | Accuracy (%)

Female 389 91.0

Gend:
e | Male 368 94.8
K 678 93.1
Grade 1 81 91.4
Age 5 404 933
g 6 120 90.0
Native Spanish 248 91.5
Language | English 253 93.7

Table 5. System performance (according to automatic results)
across several demographics. Bold numbers mean the difference
in proportion is statistically significant (p < 0.05).

To analyze how background classroom noise affected
system performance and inter-evaluator agreement, we
estimated the signal-to-noise ratio (SNR) of each test
utterance using Equation 1, where {4,} is the set of
amplitudes corresponding to the samples endpointed within
the letter-name pronunciation (“signal”), and {4,} is the
complementary set of amplitudes (“noise”). Table 6 shows
the resulting SNR statistics. The mean SNR for utterances
in which all three evaluators had the same manual
verification was not significantly different than the mean
SNR for utterances in which they disagreed (p>0.1).



However, the mean SNR for utterances in which the system
erred (disagreed with the manual verification) was
significantly lower than the mean SNR for utterances in
which the system was correct (p<0.01). This implies that
noise did not affect human evaluator agreement but
adversely affected automatic verification performance.
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Partition of test data #Zinattsﬂ Szfaimmt;ig [jef):/]
Inter-evaluator | 28r€€ 193 9.335 3.712
disagree 33 8.632 3.292
Svstem correct 648 9.623 3.533
Y error 42 7.810 | 3.796

Table 6. SNR statistics comparing the effect of noise on inter-
evaluator agreement and system performance. Bold numbers
means the difference in means is statistically significant (p<0.01).

5.2. Comparison between letter-names and letter-sounds

According to the manual verification, children performed
significantly better on the letter-name task (74.9% accepted)
than the letter-sound task (72.2% accepted), with p<0.05.
This is probably because all letter-names have a one-to-one
mapping for their pronunciations, while many of the letter-
sounds have alternative pronunciations depending on word
context. The letter-sounds are also shorter and less natural
to pronounce aloud, which may have been a factor in the
letter-sounds having twice as many disfluencies (16.9%), a
significant difference with p<0.05. Human agreement
statistics for both tasks were nearly identical.

We found the same trends in our automatic verification
performance for both the letter-name and letter-sound tasks,
in that the baseline models were worse than models trained
on in-domain data, with grammar 2 and the letter-specific
dictionary providing the best results. English letter-name
substitutions and alternative pronunciations were the most
common categorical errors for the letter-sound task, with
sight confusions and Spanish letter-name errors dominating
the letter-name task. Overall, we attained higher
verification accuracy on the letter-name task (93.08%
accuracy), compared to the letter-sound task (87.95%
accuracy), with p<0.01. We feel this difference is mostly
due to the acoustic models. Whereas HMMs using MFCC
features model letter-name phonemes well, they seem to be
less suited for the more noise-like letter-sounds. Future
research on letter-sound specific features will hopefully help
bridge this gap.

6. CONCLUSION

We showed that we could accurately verify letter-name
pronunciations through acoustic modeling at the phoneme-
level. We achieved the best results using a dictionary
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optimized for each letter separately. Our final automatic
system agreed with humans 93.1% of the time (0.813
kappa), nearing inter-evaluator agreement of 95.4% (0.891
kappa), and was unbiased with respect to the child’s grade,
age, and native language. This system also performed
significantly better than the one we previously developed to
verify the more difficult letter-sounds [2]. In the future, we
want to improve system performance in the presence of
noise through improved acoustic modeling and/or by
automatically detecting when there is too much background
noise to reliably verify the utterance.
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