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ABSTRACT

Unlike conventional automatic continuous speech
segmentation models that deal with each boundary time-
mark individually, in this paper, we propose an interval-
data-based Linear Regression Model for syllable nucleus
Durations Estimation (LRM-DE), which treats syllable
boundary time-marks in pairs. This characteristic of LRM-
DE makes it more suitable for estimating syllable
durations for English sentences, which can be used for
sentence stress detection. LRM-DE combines the
outcomes of multiple base automatic speech segmentation
machines (ASMs) to generate final boundary time-marks
that minimize the average distance of the predicted and
reference boundary'-pairs of syllable nuclei. Experimental
results show that on TIMIT dataset, LRM-DE reduces the
average difference between the predicted syllable nucleus
durations and their reference ones from 13.64ms (the best
result of a single ASM) to 11.81ms. Also, LRM-DE
improves the syllable nucleus segmentation accuracy from
81.59% to 83.98% within a tolerance of 20ms.

Index Terms— Automatic speech segmentation,
multiple linear regression, ensemble model

1. INTRODUCTION

Research shows that syllable nucleus duration (i.e. vowel
duration in a syllable) related features are critical for
English sentence stress detection [1]. A straightforward
way to estimate the syllable nucleus durations is using
automatic speech segmentation technology. An automatic
speech segmentation machine (ASM) is a system
producing a sequence of boundary time-marks, given an
utterance and its phonetic transcription.

Hidden Markov Model (HMM) based forced
alignment is the most commonly used automatic
segmentation algorithm. However, the HMMs in forced
alignment are built mainly for identifying phonemes, not

'In this paper, the reference boundaries are manually segmented,
which are considered as the actual boundaries.
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for detecting the phoneme boundaries. Thus, they can
capture a certain amount of information to identify what
the phonemes are, but they can only provide limited
knowledge about the phoneme transition [2]. Therefore, to
accurately model the phoneme transition, various
improvement algorithms have been developed, which can
be roughly categorized into two groups: refinement
methods and ensemble methods.

In the refinement methods, some tuning techniques are
used to refine the raw segmentations obtained by an ASM,
such as support vector machine [2], multilayer perceptron
[3], statistical correction to compensate for the systematic
error [4], and the context-dependent boundary model [5].
Instead of using the maximum likelihood criterion that is
used in conventional forced alignment, the minimum
boundary error criterion is used in [6].

In the ensemble methods, some techniques are used to
post-process the segmentation results of multiple ASMs to
get the final boundary time-marks. In [7], the final
boundaries are obtained by averaging the outputs of
multiple ASMs. In [8,9], the final boundaries are achieved
by the weighted sum of the bias-corrected boundaries.

The conventional automatic segmentation algorithms
try to minimize the differences between the estimated
phoneme boundaries and their reference counterparts
without considering the phoneme duration differences
between the estimated and the reference ones. These
conventional segmentation algorithms are suitable to
automatically generate time-aligned phoneme annotation
of speech corpora for unit selection based concatenative
speech synthesis and isolated-unit training based speech
recognition. However, this is problematic to obtain the
syllable nucleus durations for sentence stress detection,
since an acceptable discrepancy between the estimated
and reference syllable nucleus boundary time-marks does
not always lead to an acceptable difference between the
estimated and reference syllable nucleus durations.

Two examples are illustrated in Figure 1. The
horizontal line indicates the time axis of an utterance. The
two solid dots are the reference boundary time-marks of a
syllable nucleus, between which is reference segment #,.
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The segments in brackets and between two triangles are
estimated speech segments £, and fg,, respectively.

In the example shown in Figure 1 (a), the left bracket
and left triangle are equidistance from the left dot, and the
right bracket and right triangle are overlapped. From this
example, we can see that the boundary time-marks of
brackets and triangles have the same distances with their
reference counterparts. However, reference duration ¢, is
closer to g, (duration between the two triangles) than
(duration in the two brackets), since £g; contains the length
of its reference counterpart #, (in other words ¢y, includes
t,), which makes it always greater than #,.

Similarly, in Figure 1 (b), 5, lies inside in its reference
counterpart ¢, (in other words fg; is included in ¢,), which
makes it is always less than ¢,. 75, is overlapped with #,,
which makes the difference between fs, and ¢, smaller than
the difference between fg; and ¢,.
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Figure 1. Comparison between estimated duration and its
reference counterpart

A good duration estimation model should avoid the
situations that the estimated durations include (or are
included in) their reference counterparts. The four
possible types of relationships between the estimated and
the reference durations are illustrated in Figure 2, where
the dots are the reference boundaries and the brackets are
the estimated boundaries. In Figure 2 (a) and (b), the
estimated duration includes and is included in their
reference counterparts, respectively. There is 50% chance
that the situations in Figure 2 (a) and (b) occur, if the
automatic speech segmentation machine only tries to
minimize the difference between boundary time-marks.

—fo——=o3— (a) Include —ef——3 (b) Included
—{——e—3 (c) Intersect |—o———J o (d) Intersect

Figure 2. Relationships between the estimated and the
reference syllable durations

To reduce the chance that an estimated duration
includes (or is included in) its reference counterpart in

4850

automatic speech segmentation, in this paper, we propose
an ensemble ASM that minimizes the discrepancy of both
the estimated boundaries and durations with their
reference counterparts. It is an interval-data-based Linear
Regression Model for syllables nucleus Durations
Estimation (LRM-DE), which combines the outcomes of
multiple base ASMs. In LRM-DE, we minimize the
average distance between the predicted and reference
boundary-pairs of syllable nuclei.

This paper is organized as follows: Section 2 describes
our proposed interval-data-based LRM-DE; the evaluation
and experimental results are presented in Section 3; finally,
Section 4 gives our conclusions.

2. ALINEAR REGRESSION MODEL FOR
DURATIONS ESTIMATION (LRM-DE)

Phoneme durations estimation will be used to describe our
LRM-DE in this section, since most ASMs are phoneme
segmentation machines. The whole procedure can be
carried out to estimate syllable nucleus durations.

LRM-DE is a weighted sum of segmentation results of
different base ASMs, which minimizes the average
distance between the estimated and reference speech
segments. To reduce the possibility that an estimated
duration includes (or being included in) its reference
counterpart, both boundaries and duration are taken into
consideration in LRM-DE. Since the durations of
phonemes are a part of criterion to be optimized in LRM-
DE, the phonemes boundaries have to be considered in
pairs (i.e. their starting and ending points).

In conventional speech segmentation systems, the
starting point of a phoneme is identical to the ending point
of its previous phoneme. Then, the duration of a phoneme
is the segment between its starting point and that of its
subsequent one’s. This duration dependency expands to a
whole utterance, which makes solving the boundaries and
durations  optimization  problem  computationally
infeasible. To solve this problem, in our LRM-DE, the
relationship of two conjunctive phoneme segments is
more flexible, which can be overlapped, connected or
unconnected, as shown in Figure 3.
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Figure 3. Boundary relationships of two conjunctive
phonemes

The flexible phoneme boundaries relationships have
the ability to model the relations between the durations of



two conjunctive phonemes better than the simply
connected phoneme boundaries relationship. It has been
noticed that it is not easy to segment speech into small
units consistently, even for very experienced labellers. For
example, they have difficulties in marking the boundaries
of vowel-to-vowel [9]. Moreover, the segmentations of
different labellers may be inconsistent, and the
segmentations of the same labeller in different times may
be inconsistent. This is mainly because some phoneme
transitions are ambiguous. For some speech segment
around a boundary, it is difficult to tell which phoneme it
belongs to. It may sound like both of the two phonemes or
none of them. The connected boundary relationship alone
cannot model the ambiguity in phoneme transitions. Thus,
in our LRM-DE, it is reasonable to assume that the
boundary relation of two conjunctive phonemes can be
overlapped, connected or unconnected.

Given utterance u with its phonetic transcription and
the outputs of K base conventional ASMs, for phoneme p
in u, whose previous and subsequent phonemes are / and r,
its starting and ending points generated by the K base
ASMs are (/) and #(p), where j=1,..., K. #(/) is also the
ending points of phoneme / and #(p)is also the starting
point of phoneme r in the K base ASMs, since the K base
ASMs are conventional ASMs. The time-mark interval of
p achieved by LRM-DE is as follows,

K
50 6= Y w1l D1 (PN +[s,€li e (1)
J=1
where w; ., is the weight of the /™ base ASM given the
triphone type [-p+r, [s, €].,, is the overall system error.
Figure 4 gives an overview of LRM-DE.

To estimate the weights of the base ASMs and system
error for each triphone model, we define the distance of
two segments by Eq.(2), which takes both the boundary
difference and duration difference into consideration:

Dis([s;,e;1,[s;,¢;1)

=((e;—s)—(e; =5, +(s,-5,) +(e, —¢,)’

The criterion to estimate the weights of the base ASMs

and system error for each triphone model is to minimize

the total distance between the predicted and reference

boundary-pairs of the corresponding triphone instances.
For a triphone model /-p-+r, the objective function is:
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where #(/) and #(p) are the reference ending points of
phonemes / and p.
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Figure 4. Overview of LRM-DE
3. EVALUATION

3.1. Experiment setup
Our experiments were conducted on TIMIT dataset,
which is an acoustic-phonetic corpus of English speech.
TIMIT handbook suggests the training and test sets. In our
experiments, we used the training set to train HMMs and
the core test set to test different base ASMs and LRM-DE.
According to the suggestion in TIMIT handbook, we
discard SA1 and SA2 sentences in both training set and
test set, because they were uttered by both training and
test speakers. Then, in our experiments, the training set
and test set contain 3696 and 192 sentences respectively.
The base ASMs were trained by using the HTK toolkit
[10]. The window size and frame size are set as 10ms and
Sms respectively. A 39-dimension feature vector is
calculated for each frame of the speech data, which is
composed of 12 MFCC with energy [11], 13 first order
deviations and 13 second order deviations. The 61
phonemes in TIMIT are mapped down to 52 phonemes
that are represented by left-to-right context-independent
HMMs. There are 33 base ASMs that are 11 different
numbers of mixtures (from 1, 2, 4, ... , up to 20, step size
is 2) for 3-state, 5-state and 7-state HMMs respectively.

3.2. Evaluation measurements

Seven measurements are used in the evaluation in Table 1.
MBdyErr ph is defined as the average difference

between the estimated and reference phonemes boundaries,

as shown in Eq. (4).

1
MBAyErr _ph=——"3" (15, =50, |+l e, e, /2 (4)
NP ieP

where P is the phoneme set, N is the cardinality of P, s, ;,
e.; (s.; and e,;) are the reference (estimated) starting and
ending points of i" phone. MBdyErr v is defined in a
similar manner, which is the average difference between
the estimated and reference syllable nuclei boundaries.



MDurErr ph is defined as the average difference
between the estimated and reference phonemes durations.

1
MDurErr,ph:N_Zl(er,l_Sr,i)_(ec,l_se,i)l (5)
P ieP

Similarly, MDurErr v is the average difference between
the estimated and reference syllable nuclei durations.

Acc bdy, Acc ph and Acc v are defined as the
percentage of correctly segmented boundaries, phonemes
and syllable nuclei. A phoneme or syllable nucleus is
correctly segmented, if both its starting and ending points
have a deviation within a tolerance with respect to its
reference counterpart.

Table 1. Performances of base ASMs and LRM-DE

Measuring Quantity Abbreviation Best single base ASM LRM-DE | improvement
Mean boundary errors of phonemes MBdyErr _ph 9.28ms (5-st. 16-mix.) 7.58ms 1.23ms
Mean boundary errors of syllable nuclei MBdyErr v 8.81ms (5-st. 4-mix.) 8.09ms 1.19ms
Mean duration errors of phonemes MDurErr ph 12.58ms (5-st. 16-mix.) 10.70ms 1.88ms
Mean duration errors of syllable nuclei MDurErr v 13.64ms (7-st. 6-mix.) 11.81ms 1.83ms
Segmentation accuracies of boundaries Acc bdy (<20ms)|  90.56% (5-st. 16-mix.) 92.70% 2.14%
Segmentation accuracies of phonemes Acc _ph (<20ms) 83.35% (5-st. 16-mix.) 86.79% 3.44%
Segmentation accuracies of syllable nuclei Acc v (<20ms) 81.59% (7-st. 4-mix.) 83.98% 2.39%

3.3. Experimental results

Since the training data is limited and some triphones may
meet sparse data problems, to achieve robust weights
estimation in LRM-DE, we clustered triphones into different
groups. The clustering method we used is the same as the
method of creating tied-state triphones [10].

Table 1 shows the performances of the best single base
ASMs and LRM-DE for each evaluation measurement
within a tolerance of 20ms. LRM-DE increases phoneme
segmentation accuracy Acc ph to 86.79% from 83.35% (the
best result of a single ASM). Syllable nuclei segmentation
accuracy Acc v is increased from 81.59% (the best result of
a single ASM) to 83.98% by LRM-DE. In LRM-DE, the
mean boundary errors of phonemes and syllable nuclei
decrease to 7.58ms and 8.09ms, respectively; also, the mean
duration errors of phonemes and syllable nuclei decrease to
10.70ms and 11.81ms.

4. CONCLUSION

Previously, weighted sum based ensemble methods have
been successfully applied into automatic speech
segmentation, whereas, most of them only minimize the
discrepancy between the automatic segmentation boundaries
and their reference counterparts, without considering the
syllables (or phonemes) durations. This may cause that the
estimated segments include (or are included in) their
reference counterparts, which makes the estimated durations
always greater (or less) than their reference counterparts.

To alleviate the problem, we proposed a linear regression
based ensemble model for syllable nucleus durations
estimation, LRM-DE. It combines the outcomes of multiple
base ASMs and minimizes the average distance between the
predicted boundary-pairs of syllable nuclei and their
reference ones. Experimental results show that LRM-DE
reduces the average difference between the predicted
syllable nucleus durations and reference ones from 13.64ms
to 11.81ms, and improves the syllable nuclei segmentation

accuracy from 81.59% to 83.98% within a tolerance of 20ms.
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