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ABSTRACT

This paper presents a method to automatically quantify the spoken
English fluency skills of speakers. The focus of this work is to au-
tomatically compute a numeric score of spoken fluency that is cor-
related with the numerical score the human assessors would assign.
The proposed method combines several novel prosodic and lexical
features to compute the fluency score. It is shown that the prosodic
and the lexical features provide complementary information for flu-
ency evaluation. Extensive evaluation on human-labeled utterances
shows that the proposed technique exhibits similar trends in perfor-
mance and confusions as shown by human assessors. The proposed
technique leads to 84.2% classification accuracy when the two ex-
treme classes of fluency are considered.

Index Terms— fluency evaluation, language learning, prosodic
features, lexical features

1. INTRODUCTION

Spoken English fluency is an important skill a call center agent in
an offshore facility is expected to possess. The fluency skills are
currently evaluated by human assessors. Human assessors typically
try to engage the candidates in a conversation for about 10 minutes
to evaluate various spoken language parameters. The candidate is
asked to speak about a topic in his/her comfort zone (e.g., ’about
himself’ or ’about his family’) in the beginning and the conversation
is gradually moved to more spontaneous topics which are outside the
candidate’s comfort zone. The candidate’s fluency skills are evalu-
ated based on his/her participation in the conversation.

It is widely accepted that disfluent speech can be split into three
components [1]: the reparandum, the edit phrase and the alteration.
The reparandum is the part of the speech signal that the speaker in-
tends to replace. The edit phase is the region between the reparan-
dum and the beginning of the replacement of the reparandum. The
edit phrase quite often consists of unfilled or filled pauses (e.g.,
’ahh’, ’umm’) or discourse markers (e.g., ’like’, ’you know’). The
alteration marks the resumption of fluency. For example, in the sen-
tence: I helped him ahh her yesterday; ’him’ is the reparandum,
’ahh’ is the edit phrase and ’her’ is the alteration. The point between
the reparandum and the edit phrase is referred to as the Interruption
Point (IP).

Many researchers have investigated the problem of detecting and
removing disfluencies from speech transcripts. Their main focus was
to improve the usability of speech transcripts [2, 3, 4]. Authors in
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[3] present a transformation-based learning algorithm that uses fea-
tures based on the word-identity and the Part-of-Speech (POS) tag
to learn trends in disfluent speech regions. Shriberg in [5] analyzes
the phonetic consequences of disfluencies in spontaneous American
English. The insights gained from this analysis are combined with
various lexical features to extract metadata information from speech
signals [2]. Authors in [4] redefine the speech recognition problem
to simultaneously solve other inter-related problems such as identi-
fication of POS tags, discourse markers and speech repairs.

The focus of the present work is to automatically quantify the
level of spoken English fluency skills of a speaker as perceived by an
expert listener and thus differs significantly from the previous works.
For example, consider a case where the speaker is structurally fluent
but (s)he repeats the same thought several times using similar words.
In such cases, the present work is expected to assign a low fluency
rating to the speaker as her/his ’fluency of thought’ is poor. Auto-
matic evaluation of fluency also involves detecting if the speaker’s
response is relevant to the topic (s)he is asked to speak on. Note that
such a method of fluency evaluation is closely tied to evaluating the
vocabulary of the speaker. Our discussions with the expert human
assessors confirm this. The ultimate goal of this work is to include
a spoken English fluency evaluation module in IBM India Research
Lab’s spoken language evaluation and learning tool: Sensei [6].

Authors in [7] have developed an automatic spoken fluency
scoring technique that computes various features from either the
force-aligned output or the free-decoding output of an ASR system.
The quantitative assessments of spoken fluency reported in [8] were
performed on read speech as against real-time spontaneous speech
recordings that are used in the present work. The feature set used
in the present work consists of a combination of prosodic features
computed directly from the speech signal and lexical features which
can be computed from the transcripts (manual or ASR generated) of
the speech signal. Many of the features used in the present work are
novel and are described in detail in the next section.

2. PROPOSED FEATURES

The proposed fluency evaluation technique uses a combination of
prosodic and lexical features to capture the disfluencies in a given
speech utterance. The prosodic features are computed directly from
the speech signal and are based on detecting extended vowels, filled
pauses and regions of silence (i.e., unfilled pauses), all of which are
robust indicators of locations of interruption points. Lexical features
capture the severity of disfluency. The features are listed in Table 1
and their computation is explained below.
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Table 1. Prosodic and lexical features used for fluency evaluation.

Prosodic features

p.a Average number of filled-pauses per sec. AvgFP
p.b Average duration of a filled-pause DurFP
p.c Average distance between filled-pauses DistFP
p.d Length of the longest filled pause MaxFP
p.e Fraction of silence FracSIL
p.f Average duration of contiguous silence DurSIL
p.g Average duration of contiguous speech DurSP
p.h Average distance between silences DistSIL

Lexical features

l.a Count of most frequent word FreqW
l.b Total words TW
l.c Total unique words TUW
l.d Count of filled-pauses CFP
l.e Count of dictionary words Cwrd
l.f Total repeated ’similar’ trigrams RepTri
l.g No. of closely occurring unigrams ClUni
l.h No. of closely occurring similar trigrams ClTri

2.1. Prosodic features

While in a conversation, if the speaker senses a delay in either form-
ing the next thought or choosing the set of words to convey the
thought, the speaker typically remains silent (i.e., unfilled pause),
utters filled pauses (e.g., ’aah’, ’umm’) or extends the previous syl-
lable (e.g., ’theeeee’, ’ammm’) to fill the void. In these situations,
since the next word is not formulated, the articulators do not change
their positions (authors in [9] also make similar observations). As
a result, the vocal tract filter characteristics and hence the formants
hardly vary over this period. Our algorithm to detect lengthened vo-
calic regions and filled pauses (jointly referred to as filled pauses,
hereafter) is based on this premise.

The algorithm begins by computing the first two formants. The
wavesurfer [10] formant-tracker is used in all the experiments re-
ported here. The higher formants were excluded mainly because
the first two formants capture the stability adequately and the higher
formants are more difficult to track accurately. For a given frame,
the standard deviation (SD) of the individual formants in the ±5 ad-
jacent frames is computed. The SD is typically lower for frames
in filled pause as compared to the SD values for frames in normal
speech. The distribution of SD values in filled pause frames and in
normal speech frames in the training data is used to compute Log
Likelihood Ratio (LLR) values. A frame from a test speech utter-
ance is marked as ’probable filled pause’ if its corresponding LLR
value is positive. Otherwise, it is marked as normal speech frame.
Regions with ten or more contiguous ’probable filled-pause’ frames
are labeled as filled pauses. The above thresholds are optimized on
a set of training data with hand-labeled filled pauses. The compan-
ion paper [11] describes the above algorithm in greater detail and
compares the performance of this algorithm with other standard al-
gorithms for detecting filled pauses.

The prosodic features based on filled pause detection are: (p.a)
average number of filled pauses per second (AvgFP), (p.b) average
duration of a filled pause (DurFP), (p.c) average distance between
consecutive filled pauses (DistFP), and (p.d) length of the longest
filled pause. These features are set to zero if no filled pause is de-
tected in a recording. The DistFP feature is set to the duration of
the recording (in frames) if the number of filled pauses detected is
less than two. The other prosodic features are: (p.e) fraction of si-

lence (FracSIL), (p.f) average duration of contiguous silence (Dur-
SIL), (p.g) average duration of contiguous speech (DurSP), and (p.h)
average distance between consecutive silence regions (DistSIL). The
silence regions are detected using an energy based Voice Activity
Detector (VAD). The energy threshold for the VAD is chosen to min-
imize the detection of intra-word silences due to stops closures. The
utterance-initial and utterance-final silences are discarded from this
analysis.

2.2. Lexical features

As a starting point, in the current experiments, the lexical features
are computed on manual transcription of the data. The transcripts
are processed to remove common stop words and are then passed
through the Porter stemmer [12]. Stemming is a process to map
various inflected versions of a word to its root form. In this work,
stop words are defined as the list of words commonly occuring in
the monologues of model speakers (e.g., ’a’, ’i’, ’is’, ’of’). Thus,
stop words are not a good indicator of fluency and are removed from
the transcripts. The lexical features include: (l.a) count of the most
frequent word (FreqW), (l.b) total words (TW), (l.c) total unique
words (TUW), (l.d) count of filled pauses (CFP), (l.e) count of dic-
tionary words (Cwrd), (l.f) total repeated ’similar’ trigrams (Rep-
Tri), (l.g) count of unigrams repeating within a distance of one word
(ClUni), and (l.h) total ’similar’ trigrams within a distance of two
words (ClTri). All these features are normalized by the total dura-
tion of the recording to compensate for the variations in the duration
of the utterances across speakers. Feature (l.a) captures the speaker’s
favourite discourse marker, if any. Feature (l.b) is the count of total
words in the transcript. This feature is an indirect measure of the
proportion of silent regions in the utterance. Feature (l.c) is a good
indicator of the speaker’s vocabulary. Feature (l.d), which counts the
total number of filled pauses in the transcript, is motivated by the ob-
servation in [13] that the most common form of disfluency includes
a filled pause. Feature (l.e) is the difference of (l.b) and (l.d). In fea-
ture (l.f), two trigrams are called ’similar’ if they differ by at most
a single word deletion, insertion of substitution. For example, con-
sider the following utterance: I used to go there ahh I go there. After
removing the stop word ’to’ and stemming, the utterance becomes:
I us go there ahh I go there. The trigram I go there differs from I us
go there by only one word and hence the count of ’similar’ trigram I
go there is two. It is rare that the same N-gram is repeated often in a
given utterance. Stemming and removing the stop words relaxes the
definition of ’repeated N-gram’ and incorporating the above defini-
tion of ’similar N-gram’ relaxes the definition even further thereby
increasing the count of repeated N-grams. Features (l.c), (l.e) and
(l.f) try to quantify the ’fluency of thought’ concept that was alluded
to earlier at the end of Section 1. Feature (l.g) captures the num-
ber of instances of one-word repetition disfluencies with at the most
one-word-long edit phrases while feature (l.h) captures the number
of repetition disfluencies where the reparandum is three-word long
and the edit-phrase is at the most two-word long.

3. EXPERIMENTS

3.1. Database

The performance of the proposed fluency evaluation technique
was evaluated on data collected from real-life assessments of 112
call center candidates. These assessments were conducted at IBM
Daksh’s call center facility at Gurgaon India. Each of the candidates
was asked to first speak about him/herself for about one minute.
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Table 2. Confusion matrix between the two human assessors. The
two assessments were done on 72 randomly chosen speakers.

1 2 3 4

1 2 6 1 0

2 9 35 9 0

3 3 4 1 0

4 0 1 0 0

The candidate was then asked to speak for about one minute on
one of the following topics: (a) favourite movie, (b) favourite va-
cation, (c) favourite festival, (d) favourite book, or (e) favourite
sport. Following this, the candidate was asked to answer a lead
question based on the topic (s)he chose. Some of the examples of
the lead questions are: ’who is the most favourite character in the
movie/book’, ’what was the best part of the vacation’. Thus, each
speaker records three utterances of about one minute each (’speak-
about-self’, ’main-topic’ and ’lead-question’). The candidate’s
responses were recorded using a high quality noise-cancellation
microphone and stored at a sampling rate of 22050 Hz.

One expert human assessor listened to these responses and rated
the spoken English fluency of each candidate on a scale of 1 to 4
where 4 is very fluent, 1 is very disfluent and 2 and 3 are interme-
diate. 72 of these candidate recordings were also evaluated by a
second assessor to estimate the inter-human agreements. Of these
72 recordings, 38 assessments received the same score from both
the assessors. Thus, the inter-human agreement is 53.52% (38/71).
The confusion matrix between the two assessors is shown in Table
2. Note that of the 33 assessments where the assessors disagree, 29
confusions involve a score of 2 and of the 38 assessments where the
two assessors agree, 35 assessments received a score of 2. This in-
dicates that “2” is a very broad class. Indeed, in the larger database
of 172 assessments done by the first assessor, 91 candidates received
a score of 2 whereas the scores 1, 3 and 4 were received by only
26, 24, and 31 candidates respectively. Of these 91 score-2 assess-
ments, 31 were randomly chosen to be part of the final dataset of 112
candidates.

4. RESULTS

We begin by presenting the Pearson correlation coefficient for some
of the features described in Section 2. The correlation coefficient is
a good indicator of the linear relationship between the two variables:
in our case, the feature and the human score. Disfluent speakers
tend to use more and/or longer filled or unfilled pauses than their
fluent counterparts. Thus, the AvgFP, DurFP and FracSIL features
will have a higher value for disfluent speakers than for fluent speak-
ers resulting in negative correlations with the human fluency scores
and DistFP, DurSP and DistSIL will have a lower value for disfluent
speakers than for fluent speakers resulting in positive correlations.
Among the lexical features, TW and TUW will typically be higher
for more fluent speakers and lower for disfluent speakers. Thus,
these features are expected to exhibit positive correlation with the
fluency scores. The other lexical features, ComW, RepTri, ClUni
and ClTri will be lower for fluent speakers and higher for disfluent
speakers. Thus, these features should be negatively correlated with
the fluency scores. The correlation coefficients for all the prosodic
and lexical features are tabulated in Table 3. The second column
of the table presents the correlations when the features were com-
puted across all the three utterances for a given speaker. It is evident

Table 3. Correlation coefficient between the human score and the
individual features computed on all the three recordings recorded by
the speaker and on the last two recordings.

Feature correlation on 3 files correlation on 2 files

AvgFP -0.157 -0.228
DurFP -0.085 -0.173
DistFP 0.003 0.102
MaxFP 0.026 -0.062
FracSIL -0.177 -0.210
DurSIL 0.011 0.110
DurSP 0.188 0.189

DistSIL 0.119 0.201
FreqW -0.231 -0.344

TW 0.159 0.143
TUW 0.423 0.494
CFP -0.205 -0.254
Cwrd 0.268 0.297

RepTri -0.277 -0.313
ClUni -0.331 -0.371
ClTri -0.304 -0.349

from the table that the behaviour of these features is in line with our
expectations.

In general, the lexical features are more correlated than the
prosodic features. The TUW feature, although a very simple feature,
is the best single feature in terms of the correlation with the human
scores. The decent performance of these relatively simple lexical
features raises our hopes that more sophisticated features can lead
to a better performance. Some of the more sophisticated features
being explored are based on using the POS tag information and on
detecting the number of incomplete sentences and fresh starts. On
the other hand, to achieve this level of performance from the lexical
features in a practical situation the Automatic Speech Recognition
(ASR) system has to be highly accurate.

Authors in [14] mention that the rate of repetition disfluency is
lower when the speaker has practiced speaking on a topic. We ob-
serve similar trends in our data. Almost all the speakers are fluent
when talking about themselves: a topic they are familiar with and
have potentially rehearsed speaking about. To remove this bias, the
same set of features are also computed on only the other two ut-
terances per speaker, namely ’main topic’ and ’lead-question’. The
corresponding correlation coefficients are tabulated in the third col-
umn in Table 3. Note that the correlation coefficients are better for all
the features when the ’speak-about-self’ utterance is excluded from
the analysis. We also conducted experiments using just the ’main-
topic’ utterance and just the ’lead-question’ utterance. Neither case
showed any particular improvement over using both the utterances.
The rest of the results are presented on features computed on only
these two utterances per speaker. The optimal linear combination of
the prosodic features leads to a correlation of 0.546 and the optimal
linear combination of the lexical features leads to a correlation of
0.598. The optimal linear combination of all the features leads to a
correlation of 0.680.

4.1. Classification

The classification experiments reported here, were conducted using
the Weka [15] implementation of SVM. The first set of classification
results are on the two extreme classes: 1 and 4. As shown in the
second column of Table 4, the classification accuracy for this case
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Table 4. Accuracy of the proposed fluency evaluation method.

2-class 3-class 4-class

All features 84.21% 71.43% 53.57%

Prosodic 71.93% 55.36% 41.07%

Lexical 78.95% 65.18% 50.89%

Chance 54.38% 49.10% 27.68%

Table 5. Confusion matrix for 4-class classification

classified as –> 1 2 3 4

1 14 7 4 1

2 5 14 9 3

3 5 9 9 1

4 1 6 1 23

is 84.21% when all the features are used. The corresponding chance
accuracy is tabulated in the last row for comparison. Chance accu-
racy is defined as the accuracy when all the test samples are classi-
fied as belonging to the class with majority samples. It is evident
that the proposed technique can reliably discriminate between the
best and the worst candidates. The third and the fourth rows com-
pare the corresponding classification accuracies when only prosodic
and only lexical features are used respectively. The performance of
the lexical feature-set is better than that of the prosodic feature-set
although neither of them is close to the performance of the combined
feature set. This indicates that the prosodic and the lexical features
provide complementary information for fluency evaluation.

The next set of classification results are on three classes, where
’2’ and ’3’ are combined to form one class and 1 and 4 are the other
two classes. The third column of Table 4 presents the accuracy when
all the features are used and when the prosodic and lexical feature-
sets are used separately. Finally, the fourth column presents the re-
sults on 4-class classification. As expected, the performance drops
as the number of classes is increased although the accuracy in each
case is much higher than the chance accuracy. Our analysis indicates
that one of the main reasons for the drop in performance when utter-
ances with intermediate scores are included is that often the human
assessors are very accurate in identifying candidates who fall in ei-
ther of the two extremes but assign intermediate scores, especially
the score ’2’, to candidates with a broad range of fluency skills. The
confusion matrix for the 4-class classification using all the features
is tabulated in Table 5. Note that the maximum confusion is be-
tween class 2 and class 3 whereas class 1 and class 4 are quite well
separated. This trend is similar to the trend observed in confusions
among the human assessors (ref. Table 2).

The performance of the proposed algorithm is almost equal to
the inter-human agreement in the 4-class classification case. As a
comparison, the performance of the technique proposed in [7] is
about 7-12% below the inter-human agreement rate.

5. DISCUSSION AND FUTURE WORK

In this paper, we propose an automatic spoken fluency evaluation
technique to match the perception of expert human assessors. The
proposed technique uses a combination of novel prosodic and lex-
ical features to compute an overall score of fluency. The prosodic
and the lexical features contribute complementary information for
fluency evaluation. It is shown that the proposed technique and the

human assessors make similar types of errors. Work is in progress to
compute the lexical features from the output of an ASR system and
to analyze the effect of ASR’s word error rate on the overall fluency
evaluation.
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