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ABSTRACT

The current automatic cognitive load measurement system

based on MFCC and prosodic features does not take into ac-

count phase based speech information. This paper aims to

improve the performance of the baseline system by introduc-

ing phase based features into the system. The additional fea-

tures proposed are group delay features, all-pole model based

FM features and zero crossing count based FM features. De-

crease in performance is observed when phase based features

are considered individually or when concatenated with base-

line features. However, significant performance improvement

is observed when group delay features are fused with baseline

features using linear combination score level fusion.

Index Terms— feature extraction, speech classification,

cognitive load, group delay, frequency modulation

1. INTRODUCTION

Cognitive load refers to the amount of mental demand im-

posed on a learner’s cognitive system when performing a par-

ticular task [1]. Central to the cognitive load theory is the

claim that human working memory is limited. Thus, tasks

need to be structured in such a way that the load on the human

working memory is kept to a minimum. This has important

consequences in the field of educational psychology where

cognitive load theory is used to design and structure learn-

ing tasks to allow for more effective learning [1]. Similarly,

cognitive load theory plays a significant role in the design of

human-computer interface systems, especially systems which

involve large amount of information (for example, a train traf-

fic control system [2]).

When designing a system with the aim of reducing cog-

nitive load requirement, the ability to measure the cognitive

load of individuals is crucial. Numerous methods have been

proposed in order to measure cognitive load. These methods

can be divided into subjective rating techniques, physiologi-

cal methods, and performance-based measures [1].

Recently, speech features have been identified as a po-

tentially non-intrusive and inexpensive method of measuring

cognitive load. Sentence fragments and articulation rate were

proposed by Berthold et al. as a method of assessing a user’s

cognitive load level [3]. A semi-automatic system was de-

signed by Muller et al. which utilizes a wide range of features

such as silent pauses and disfluencies [4]. In [5], Yin et al.

proposed the use of rate of pauses and rate of pitch peaks as

features for an automatic cognitive load measurement system.

In [6] and [7], Yin et al. implemented the automatic mea-

surement system using Mel frequency cepstral coefficients

(MFCC) and prosodic features together with a Gaussian mix-

ture model (GMM) classifier.

However, the speech features used in [6] and [7] do not

take into account phase based information of the speech spec-

trum. Alsteris and Paliwal have suggested that phase informa-

tion contains important information that can be utilized in dif-

ferent areas of speech processing [8]. This has already been

proven in areas such as emotion detection [9] and speaker

recognition [10] where the inclusion of phase related infor-

mation improves the accuracy of the recognition system.

In this paper, three different phase based features will be

introduced as potential features for cognitive load level classi-

fication. The performance of these features will then be com-

pared and fused with the baseline system proposed in [7] with

the aim of improving the overall performance of the cognitive

load measurement system.

2. COGNITIVE LOAD MEASUREMENT SYSTEM

2.1. Baseline System

The baseline system used for comparison of performance is

based on the system proposed by Yin et al. [7]. This system

utilizes MFCC and prosodic features (pitch and intensity) as

the main feature set. These features are later passed through a

voice activity detector so that only the voiced region of speech

is considered.

Shifted delta coefficients (SDC) are then calculated based

on the features to model the long term temporal variation of

speech. To account for channel and speaker variability, cep-

stral mean subtraction (CMS) is applied on the cepstral coeffi-

cients and feature warping is performed on each of the feature

coefficients [7].
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Fig. 1: Extraction of group delay features [9]

2.2. Group Delay Features

A cognitive load measurement system shares certain char-

acteristics with an emotion detection system. For example,

both systems aim to detect load level or emotion by detecting

changes in speech patterns. Recently, group delay features

have been used successfully for emotion detection [9]. This

provides the motivation to apply the same features for cogni-

tive load measurement.

Despite the importance of the phase spectrum, one prob-

lem encountered by phase features is that phase needs to be

unwrapped before it can be used [8].

Group delay, on the other hand, is closely related to phase

but does not suffer from the unwrapping problem. Thus,

group delay can potentially be used to represent the phase of

a speech frame. Formally, group delay is defined as

G(f) = −dφ(f)
df

(1)

where φ(f) is the phase of the Fourier transform of the signal

x(t). Figure 1 shows the process of extracting the group de-

lay feature vector from a speech signal as proposed by Sethu

et al. [9]. In order to estimate the group delay, the all-pole

filter coefficients are obtained from the LPC performed on a

10ms speech. The phase response of the filter is then passed

through a digital differentiator to obtain the group delay. DCT

is applied on the group delay vector to decorrelate and reduce

the dimensionality of the feature vector. The first 10 DCT co-

efficients are used as the group delay feature vector. SDC and

feature warping can then be applied on the feature vector.

2.3. FM Features Based on the All-Pole Model

Features based on the AM-FM speech model have been

used successfully in the area of speech recognition [11] and

speaker recognition [10]. However, such features have yet to

be applied to cognitive load measurement.

In the AM-FM model, speech signal s[n] is modeled as

the sum of AM-FM signals which corresponds to the vocal

tract resonances

s[n] =
K∑

k=1

ak[n]cos(φk[n]) (2)

Fig. 2: Estimation of FM components based on the all-pole

model

where K is the total number of resonances, ak[n] is the AM

component and φk[n] is the phase of the kth resonance at time

index n [10].

Each of the resonances can be isolated using a bandpass

filter. The kth bandpass filter output pk[n] can be represented

as

pk[n] = ak[n]cos

[
2πnfck

fs
+

2π

fs

n∑
r=1

qk[r]

]
(3)

where qk[n] is the FM component, fs is the sampling fre-

quency and fck is the center frequency of the kth band pass

filter [10].

Figure 2 describes the method of estimating the FM com-

ponent qk[n] by modeling the component using a second order

all-pole resonator as proposed by Thiruvaran et al. [10]. The

pole angle of the resonator θk from the origin is calculated

from the second order linear prediction coefficients (LPC).

The pole angle is then used to estimate the FM component

qk[n] = θk
fs

2π
− fck (4)

The FM estimate from each subband is then concatenated

to form the FM feature vector. SDC and feature warping

can then be applied on the feature vector. This method of

FM extraction is reported to produce more reliable FM esti-

mates compared to other techniques such as DESA or Hilbert-

transform based methods [10].

2.4. FM Features Based on Zero Crossing Count (ZCC)

One disadvantage of the FM feature extraction technique de-

scribed in Section 2.3 is the high computational complexity in

the overall implementation. In this section, a novel FM fea-

ture extraction method with low computational complexity is

proposed.

This FM extraction technique is based on the zero cross-

ing count of speech. Consider a continuous speech signal s(t)
of frame length l. The signal is first decomposed into smaller

bands using a subband filter bank. This is necessary to limit

the instantaneous frequency into a small range. For each sub-

band signal sk(t), the zero crossing count zk is calculated.

The number of full oscillations of the signal can then be ap-

proximated as

xk =
zk

2
(5)

If there are zk

2 number of full oscillations in l seconds, then

the period of one full oscillation can be approximated as

Tk =
2l

zk
(6)
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The instantaneous frequency is then given by

fik =
zk

2l
(7)

In the case of a discrete signal with a frame length of N
samples

l =
N − 1

fs
(8)

where fs is the sampling frequency. Thus, the instantaneous

frequency fi can be rewritten as

fik =
zkfs

2(N − 1)
(9)

The FM estimate for each subband is then taken to be

fk = fik − fck (10)

where fck is the center frequency of the kth subband filter.

The FM feature vector is formed by concatenating fk of each

subband for a particular frame of speech. SDC and feature

warping can then be applied on the feature vector.

In practice, simply calculating the zero crossing count for

a signal might not take into account oscillations which are

not centered about zero. Thus, the zero crossing count of the

differentiated signal zkd is calculated instead and the average

of the two zero crossing count values is taken z̄k = zk+zkd

2 .

Equation 9 is then applied to z̄k instead of zk.

Since calculation of zero crossing count involves simple

subtraction and sign comparison, this feature extraction tech-

nique has a much lower computational complexity compared

to the all-pole model based method for FM feature extraction.

3. EXPERIMENT

3.1. Task Design

To test the accuracy of the classification system, speech data

are collected from a Stroop test whereby different levels of

cognitive load are induced. The experimental data and set up

are similar to the Stroop test evaluation performed in [7]. In

the Stroop test, subjects are given names of colors printed in

different colored fonts. If the font color is different from the

color name, the word is said to be printed in an incongruent

color. Using the Stroop test, three levels of cognitive load

are induced. The low cognitive load task requires subjects

to read the color names printed in black or congruent colors.

The medium cognitive load task requires subjects to name the

font color for color words with incongruent colors. Finally,

the high cognitive load task is similar to the medium level task

except that time constraints are added to it. Each task lasts for

about 30 seconds. Apart from the Stroop test, a separate story

reading task of duration 90 seconds is recorded by each of the

same participants as training data.

The tests were undertaken by 14 random, native En-

glish speaking participants. The evaluation performed was a

Table 1: Percentage accuracy of individual systems based on

baseline and proposed features

Accuracy (%)

Baseline Features 82.9

Group Delay Features 72.6

All-Pole based FM Features 51.2

ZCC based FM Features 45.2

closed-speaker set evaluation, meaning that all 14 speakers

that appeared in the evaluation data existed in the training

data as well.

3.2. Performance Evaluation

A Gaussian mixture model (GMM) classifier is used to evalu-

ate the individual and combined cognitive load measurement

systems. The optimal number of mixtures used for modeling

the GMM is found to be 128. Due to the lack of training data,

background model and adaptation are performed to improve

the accuracy of the classifier.

To evaluate the performances of individual systems, the

GMM classifier is trained separately for each system. The ac-

curacy of the classification is used as a performance measure

of the individual systems.

To evaluate the performances of systems with phase based

features combined with the baseline system, two different fu-

sion techniques are used: feature level fusion and score level

fusion.

Feature level fusion involves combining the features by

concatenation. Score level fusion, on the other hand, involves

setting up a GMM model for each feature vector and then

applying weights to the loglikelihood scores of the individual

systems. In this paper, the loglikelihood score is weighted

using a simple linear combination of scores:

LLfused = αLL1 + (1− α)LL2 (11)

where α is the weight, LLi is the loglikelihood score pro-

duced by the ith GMM classifier and LLfused represents the

fused score. LLfused can then be used to classify the test

utterances. This method of fusion allows the amount of con-

tribution from each system to be controlled. Due to the small

data set, the search for the optimum weights is performed us-

ing a brute force method on the test data set itself.

4. RESULTS

Table 1 shows the performances of the individual systems

based on different feature vectors. It can be seen that the base-

line performance is the best, with an accuracy rate of 82.9%.

The group delay based system comes second with an accuracy

rate of 72.6%. Although this performance is worse than the

baseline performance, note that the group delay based system
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Table 2: Percentage accuracy of baseline system and fused

systems

Feature Level

Fusion (%)

Score Level

Fusion (%)

Baseline 82.9 82.9

Baseline + Group Delay 75.0 85.3
Baseline + All-Pole FM 65.5 82.9

Baseline + ZCC FM 75.4 82.9

has a lower computational complexity since the feature vec-

tor consists of only 40 coefficients as compared to the baseline

feature vector which consists of 72 coefficients. FM features,

on the other hand, performs very poorly when compared to

the baseline system.

Table 2 shows the performances of the fused systems

compared to the baseline system. In the case of feature level

fusion, all three proposed features do not improve the accu-

racy rate of the baseline system at all. This might be due to

the fact that feature level fusion assigns equal weighting to

all features in the fused system. This might cause the low

accuracy of phase based features to pull down the accuracy of

the baseline features when the two feature sets are combined.

When score level fusion is used on the baseline and group

delay based system, an improvement of about 2.4% is ob-

served (as shown in Table 2). This improvement can be ex-

plained by observing which sound files are classified wrongly

by each individual system. The error pattern of the group de-

lay based system is different when compared to the baseline

system. When the likelihood scores for the individual systems

are weighted during fusion, this translates to an improvement

in accuracy. On the other hand, the error patterns of the FM

features are a subset of the baseline system. Thus, FM fea-

tures do not contribute at all in the fused system.

The results show that as an individual system, group delay

based system performs worse than the baseline system. How-

ever, group delay features carry some phase-related informa-

tion not contained in the baseline features and this translates

to an improvement in accuracy when the features are fused

with the baseline system using score level fusion.

5. CONCLUSION

This paper has proposed the use of phase based features to

improve the current baseline cognitive load measurement sys-

tem consisting of MFCC and prosodic features together with

shifted delta coefficients. FM based features do not appear to

be effective when compared to the baseline system. However,

improvement in performance is achieved when linear combi-

nation score level fusion is used to combine baseline system

with group delay based system. Thus, while better features

need to be explored, this result also indicates that score level

fusion provides a promising new avenue for future research.
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