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ABSTRACT

In this paper, we present advanced techniques that improved the per-
formance of IBM Malay-English speech translation system signif-
icantly. During this work, we generated linguistics-driven hierar-
chical rules to enhance the formal syntax-based translation model;
designed an active learning approach with bi-directional translations
that outperformed unsupervised training; utilized translation direc-
tion information in parallel training corpus to build direction-specific
interpolated language models for machine translation. There is 20%
relative improvement achieved in the translation performance through
all these techniques. A state-of-the-art Malay speech recognition
system was also established as one of the crucial modules in the
rapidly developed Malay-English speech translation.

Index Terms— Machine Translation, Speech Recognition, Ac-
tive Learning

1. INTRODUCTION

Speech translation has become an active area in recent years. It cov-
ers both automatic speech recognition (ASR) and machine transla-
tion (MT) and calls for innovative ideas from both fields. In this
work, we report significant progress we have achieved during the
rapid development of speech translation between a low-resource lan-
guage pairs, Malay and English. We will cover the following topics:
linguistics-driven hierarchical rules to enhance formal syntax-based
translation model; active learning with bi-directional translations; di-
rection specific interpolated language models.

Syntax-based translation model has drawnmuch attention in ma-
chine translation community recently. It incorporates both phrase-
based translation structure and synchronous context-free grammar
(SCFG), and has shown promising progress in various translation
tasks. Syntax-based translation models can be further categorized
into two classes: formal syntax-based and linguistical syntax-based.
The former automatically extracts synchronous grammar from par-
allel corpus without explicit usage of linguistic knowledge (e.g. [1]),
while the latter relies on the syntactic parsing information on at least
one side of the parallel corpus (e.g. [2][3]). Some approaches com-
bining both classes have been proposed recently. In [4], a prior
derivation model is incorporated using linguistically syntactic pars-
ing to improve the performance of formal syntax-based translation
model. In this work, with a similar motivation as in [4], we enlarge
the data-driven hierarchical rule set with a set of linguistics-driven
rules to achieve better coverage of rules and also more accurate long-
distance reordering. Those additional rules are automatically created
based on part-of-speech (POS) tagging on one side of the parallel
corpus and catch some of the canonicalized reordering phenomena
in case they are missed by the blindly data-driven hierarchical rules,
especially when the training data is rather limited.

In this work, we also propose a new active learning approach
for statistical machine translation. Various unsupervised and semi-
supervised training techniques have been proposed for speech recog-
nition and machine translation in recent years. For example, un-
supervised training is shown as an effective approach in [5][6] for
speech recognition, and in [7] for machine translation. An approach
that combines active and semi-supervised learning was also pro-
posed in [8] for spoken language understanding. As a continuation of
the work in [7], we extend the approach to active learning here. We
first translate monolingual data with the baseline system, then select
sentences that are the most difficult to translate by current system
so that human can make corrections. Such approach can be efficient
and effective for rapid development of translation system on new or
low-resource languages.

It is known that language model (LM) is an important compo-
nent in both speech recognition and machine translation. The ap-
proach of interpolating multiple language models built from differ-
ent domain data has been widely applied. In this work, we point out
that the translation direction information in parallel corpus is crucial
and can be utilized to improve the language model.

The rest of the paper is organized as follows: Section 2 presents
formal syntax-based baseline model and linguistics-driven hierarchi-
cal rules. Section 3 describes the active learning approach. Section
4 briefly mentions the direction-specific interpolated language mod-
els. Section 5 introduces the development of a state-of-the-art Malay
speech recognition system. Section 6 reports extensive experimental
results obtained in Malay-English translation. The paper ends with
some conclusions and future work discussion in Section 7.

2. COMBINING LINGUISITIC KNOWLEDGEWITH
FORMAL SYNTAX

In this section we first describe our baseline, a formal syntax-based
MT system, then present the approach of combining formal syntax
with linguistic knowledge.

2.1. Formal Syntax-based Translation

Our baseline contains a formal syntax-based translation model [4]. It
utilizes SCFG, with each synchronous production, i.e. rule, rewrit-
ing a non-terminal into a pair of strings, source string S and target
string T , in both languages. Each string can contain both terminals
and non-terminals, under the constraint that there is one-to-one cor-
respondence between non-terminals at the source and target side. A
unified symbolX is used for all non-terminals in the rule set.

X →< S, T,∼>, (1)

where ∼ is the link between non-terminals in S and T . A glue rule
is embedded with decoder to allow sequential concatenation of sub-
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translations.
X →< X1X2, X1X2 > . (2)

During the system building, we start from a sentence-aligned
parallel training corpus and generate word alignments with GIZA++
[9] based on IBM Model 1-4 and hidden Markov model. Then we
extract phrase pairs based on the word alignments and some sym-
metrization heuristics [9]. A phrase table is built upon them with the
probabilities estimated based on relative frequency. Abstract rules
are extracted based on generalization of phrase pairs, similar to [1].
Each abstract rule has one or two non-terminals. A set of pruning
techniques are applied to control the size of rule set. The features
used in the decoder include phrase translation probabilities and lex-
ical probabilities in both directions, language model, word counts,
rule counts, glue rule penalty and abstraction penalty[4]. The decod-
ing weights are optimized to maximize BLEU scores [10]. A 4-gram
language model is trained with Kneser-Ney smoothing [11] and used
in the decoder.

2.2. Linguistics-Driven Rules

We tried to improve our baseline translation system by adjusting it
to some general systemic differences between English and Malay to
compensate for insufficient observations, such as word order of noun
phrases, and forming questions.

As in English, the basic word order in Malay is Subject Verb Ob-
ject. However, there are several differences in constituting complex
noun phrases. Adjective pre-modifications in English are usually or-
dered from the most specific to the most general, while in Malay
they appear as post-modifications in reverted word order, e.g. dark
blue color ↔ warna(color) biru(blue) gelap(dark). Demonstrative
and possesive pronouns follow the noun, e.g. this car↔ kereta(car)
ini(this) or your car↔ kereta(car) awak(your).

While analyzing the English to Malay translation output, we ob-
served that noun phrases that had to be covered by combinations of
short 1-1 phrase pairs often use the English word order. In order
to encourage these word reordering and also to increase the word
coverage, we decided to add high probability rules such as

X →< X1Ne, NmX1 > (3)

for all English-Malay noun translation pairs Ne ↔ Nm, and rules
such as

X →< JeX1, X1Jm > (4)
for all adjective translation pairs Je ↔ Jm.

We also tried to improve the performance on general questions,
such as Do you like apples... by inserting rules of form

X →< do/doesX1VeX2, X1VmX2lah > (5)

for all verb translation pairs Ve ↔ Vm.
Since we had no POS annotated data for Malay available, in

order to obtain the necessary POS specific translation pairs, we pro-
cessed the English part of the parallel corpus by a syntactic parser
[12], and extracted lists of English nouns, adjectives, and verbs.
Then we found their translations in publicly available online dic-
tionaries, using all one-word translation alternatives.

3. ACTIVE LEARNING

In this work, we also propose a combination of active learning with
unsupervised training to alleviate the low resource problem of sentence-
aligned parallel training data. Parallel corpus is an essential resource

for developing machine translation systems. However, it is typically
expensive and time-consuming to collect such parallel corpus when
we need to develop a system for new language pairs.

Similar with our previous work in [7], we can take advantage
of available monolingual data in one of the languages. First we
translate those monolingual data using the baseline system in both
directions. The translation hypotheses are selected from re-ranked
N-best list based on confidence scores as in [7]. Then we select the
sentences that current system has the biggest problem with for hu-
man to correct. For those sentences with confidence scores higher
than certain threshold, we add them directly into the original parallel
corpus. While for those with lowest confidence scores below a cer-
tain threshold, we present them automatically to human translators
to check the quality and make corrections before adding them to the
parallel corpus and retraining the system. The procedure can be iter-
ative. In this way, we can quickly establish an MT system with good
performance on the new language pairs by always actively expand-
ing data that is mostly needed by the translation models.

Assume we need to build an MT system between language E
and F , and we have a parallel corpus C1 to start with. In the mean-
time, we have a large corpusE1 in languageE that is relevant to our
target task.

The algorithm is as following: Start with iteration i = 1,

1. Build a two-direction translation system Si using parallel cor-
pus Ci for E→F and F→E.

2. UseE→F model of system Si to translate sentences inEi to
hypotheses Fi.

3. Use F→E model of system Si to translate Fi to hypotheses
E′

i.

4. Measure the similarity or distance between sentences in Ei

and E′
i using some scoring metrics. In this work we use

BLEU.

5. Rank the similarity scores of all sentence pairs in Ei and Fi.

6. Pick sentence pairsEl↔Fl which have lowest similarity scores,
and present them to human translators to correct the transla-
tions and add to parallel corpus.

7. Add also sentence pairsEh↔Fh with highest confidence scores
into the parallel corpus for next iteration, so Ci+1 = Ci +
El + Fl + Eh + Fh.

8. Make Ei+1 = Ei − El − Eh and i = i + 1, go back to step
1, until certain stop criterion is met.

The advantage of the active learning approach is that at each
iteration, we pick a subset of the corpus which has lowest scores,
when E translates into F and then translates back to E, for human
checking and correction. This approach tries to maximize the human
correction effectiveness. In the meantime, in each iteration we also
add sentence pairs with high confidence scores to current corpus. In
this way, the phrase coverage can be quickly improved.

4. INTERPOLATED LM

Interpolated language models have been widely used as a way to
adapt the model towards different domain. Here we propose an ap-
proach to take into consideration of the direction information in the
parallel training data for speech translation. The training data for
target languages is partitioned into two subsets based on the transla-
tion direction (E→F or F→E). For tasks like those in the DARPA
TRANSTAC program, there are mainly two types of speaker roles:
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interviewer who asks questions, and respondent who answers ques-
tions. It is understandable that the speech content from each direc-
tion varies significantly. This information can be utilized to build a
better language model for specific test scenarios, e.g. translation of
respondent speech. There is also a way to bias the translation model
instead of language model, by simply duplicating multiple times the
data from certain subset in the parallel corpus. We will compare
these two approaches in Section 6 later.

5. MALAY SPEECH RECOGNITION

In this section we briefly describe the development of a state-of-art
Malay speech recognition system.

Our Malay acoustic training data consists of around 90 hours
of speech collected under the DARPA TRANSTAC program. Ev-
ery 10 ms a 24-dimensional MFCC feature vector is computed and
then mean normalized. Sequences of 9 vectors are then stacked to-
gether leading to a 216-dimensional new feature vector. This new
feature space is finally reduced to 40 dimensions with a combina-
tion of linear discriminant analysis (LDA) and maximum likelihood
linear transformation (MLLT).

We built context-dependent quinphone models with 90K Gaus-
sians and 35 phonemes. The models are trained under either maxi-
mum likelihood (ML) or minimum phone error (MPE) [13] criterion,
with an fMPE [14] feature transform applied to the latter. Online
speaker adaptation with vocal tract length normalization (VTLN)
and feature space maximum likelihood regression (fMLLR) are uti-
lized to further improve the performance. A statistical 3-gram lan-
guage model with Kneser-Ney smoothing [11] is trained with around
100K Malay sentences.

Table 1 shows the roadmap of the development of our Malay
ASR system. The word error rate (WER) is measured on a 3-hour
Malay test set randomly selected from the acoustic data and excluded
from the training. Three types of data are included in the test set,
from 1.5-way (t1), 2-way monolingual (t2) and 2-way bilingual (t3)
corpora respectively, as shown in Table 1.

Train Iter t1 t2 t3 All
ML 1 11.98 33.33 18.36 21.72
ML 2 11.32 31.09 18.25 20.74

+VTLN 1 11.03 28.64 15.93 19.00
+fMLLR 1 10.58 25.84 14.92 17.52

+MPE+fMPE 4 8.92 22.19 11.95 14.71

Table 1. ASR results on the Malay test set

In the second iteration of ML training, we used the previous iter-
ation model to align the audio data against the transcripts to generate
better alignment, which helped by 1% in WER. VTLN and fMLLR
together reduced the WER by another 3% absolute. Finally discrim-
inative training in feature and model space, i.e. fMPE and MPE,
reduced the WER down to 14.71%. The improvement is consistent
across three different types of data in the test set.

6. EXPERIMENTAL RESULTS

In this section, we report the results we obtained on a set of exper-
iments conducted in translations between English and Malay. The
translation model in the baseline system is trained with 100K par-
allel sentences provided under the TRANSTAC program. 4-gram

language models are trained with the target side data from the paral-
lel corpus. The system weights are tuned on a development set with
around 1K sentences. There are 1340 sentences in Malay-to-English
test set and 1050 sentences in English-to-Malay test set. The experi-
ments in the first three subsections below are conducted on English-
to-Malay translation, with speech reference as input. The last sub-
section reports speech-to-text (S2T) translation results in both direc-
tions. All test sets have one set of human-annotated MT references.

6.1. Interpolated LM

As mentioned earlier, there are two types of directional data in the
parallel training corpus. The distribution of the translation direc-
tions are shown in Table 2, where E stands for English and M for
Malay. Separate Malay language models are trained with each sub-
set of data. Then interpolation weights are tuned on the development
set to minimize the perplexity.

Direction Sentences Weights Perplexity
E→M 6K 0.64 310.22
M→E 94K 0.36 493.05

Interpolated 100K 212.43

Table 2. Perplexities from different subsets

Since in our English-to-Malay translation task, the English input
is dominated by interviewer speech, the component trained with E-
to-M data was assigned the much larger weight than that on the other
direction, even though the data is little among the whole training
corpus.

System Interp LM Dup Train Sentences BLEU
Baseline No No 100K 19.23
System I No Yes 130K 20.19
System II Yes No 100K 20.80
System III Yes Yes 130K 21.02

Table 3. Interpolated LM vs. duplication of parallel data

The translation results are shown in Table 3. We compare the
effect of interpolated LM with the duplication of E-to-M data by
6 times. We can see that compared to the baseline, duplication of
parallel data achieved 1 point of gain in BLEU. While using inter-
polated LM only, there is a larger gain obtained with 1.6% absolute.
When using both approaches, another 0.2% gain is achieved. These
results show that both techniques are helpful and interpolated LM
provides relatively larger benefit.

6.2. Active Learning

In Table 4, we compare the results of active learning and unsuper-
vised training. We translate 90K English sentences with system
III in Table 2 first using unsupervised technique back and forth in
both directions as described in Section 3. Then we sort the sentence
pairs according to BLEU-based similarity scores. We added differ-
ent amount of sentences, starting from those with highest scores, to
the original corpus, as in row 2 to 4 in Table 4. There is little change
when adding the top 20K sentences. With 70K sentence pairs, we
have with more phrase pairs and abstract rules in the model and ob-
tained 0.4% gain. Adding all 90K sentences, there is no more im-
provement. The bad translation from the bottom sentences hurts the
performance instead.

4803



Orig Unsupervised Active Phrases Rules BLEU
100K 0 0 1.8M 3.1M 21.02
100K 20K 0 2.1M 4.0M 21.12
100K 70K 0 2.9M 6.8M 21.43
100K 90K 0 3.7M 8.8M 21.21
100K 70K 20K 3.8M 8.9M 22.17
100K 70K 20K 3.8M 4.0M 22.43

Table 4. Active learning vs. unsupervised training

We picked the bottom 20K sentence pairs that have the lowest
scores for human to correct, then added the correct translation into
the original corpus along with the 70K sentences selected with un-
supervised training. There is 0.7% absolute gain from adding the
active learning data. Since when generalizing the phrase pairs ob-
tained from unsupervised data, there could be more noise added into
the abstract rule set, we try to exclude those abstract rules obtained
from unsupervised data, as in the last row in Table 4, another 0.3%
gain was obtained in BLEU.

6.3. Linguistics-Driven Rules

In Table 5, we show the effect of adding 33K linguistics-driven hi-
erarchical rules to the original data-driven abstract rule set. There is
0.4% gain obtained purely from these additional rules, even though
the number of extra rules is less than 1% of the original rule set.
This shows that linguistic rules have much higher quality and more
focused than the data-driven rules. They also provided extra rules
that the original rule set couldn’t cover due to limited amount of
training data.

System Phrases Rules BLEU
Formal Syntax 3.8M 4.0M 22.43
+ Linguistic rules 3.8M 4.1M 22.84

Table 5. Linguistics-driven rules

With the three techniques mentioned above, we eventually in-
creased the BLEU score from 19.23% to 22.84%, around 20% rela-
tive improvement, which is significant.

6.4. S2T

We also show the improvement in S2T in both translation directions
in Table 6, where the Malay ASR WER is around 15% and En-
glish around 11%. The final model utilized all techniques described
above. Significant improvement has been achieved in both directions
for S2T task, similar with the results obtained on the translation of
speech references.

Direction System S2T
M→E Baseline 30.44
M→E Final 33.65
E→M Baseline 16.69
E→M Final 20.91

Table 6. Speech translation results

7. CONCLUSIONS AND FUTUREWORK

We have described severval advanced and effective approaches that
improved the performance of our Malay-English speech translation
system significantly. With the help of linguistics-driven rules, active
learning, direction specific interpolated language models, the BLEU
score was increased by around 20% relative. We also established a
state-of-the-art Malay speech recognition system for Malay-English
speech translation. Our next work will focus on more intelligent
rule extraction, selection and filtering techniques. A combination
of linguistic knowledge and formal syntax will continue to be an
interesting topic for machine translation.
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