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ABSTRACT

Bayesian Networks, BNs, are suitable for mixed-initiative dialog
modeling allowing a more flexible and natural spoken interaction.
This solution can be applied to identify the intention of the user con-
sidering the concepts extracted from the last utterance and the dialog
context. Subsequently, in order to make a correct decision regard-
ing how the dialog should continue, unnecessary, missing, wrong,
optional and required concepts have to be detected according to the
inferred goals. This information is useful to properly drive the dia-
log prompting for missing concepts, clarifying for wrong concepts,
ignoring unnecessary concepts and retrieving those required and op-
tional. This paper presents a novel BNs approach where a single
BN is obtained from N goal-specific BNs through a fusion process.
The new fusion BN enables a single concept analysis which is more
consistent with the whole dialog context.

Index Terms— dialog modeling, bayesian networks

1. INTRODUCTION

A dialog is a communicative process aimed to negotiate and, even-
tually, satisfy some objective. In this sense dialog modeling plays
a fundamental role in helping users to reach their dialog goals effi-
ciently when interacting with speech interfaces. Recent approaches
[1][2][3] have shown a significant effort toward the goal of apply-
ing BNs to spoken dialog systems, SDS. BNs enable true mixed-
initiative dialog modeling allowing a more flexible and natural spo-
ken interaction. This paper presents new advances on the application
of BNs to dialog modeling focusing on both the appropiate number
and topology of the considered BNs. In this sense, we compare the
typical N goal-specific BNs approach with a new one based on a
fusion BN, both in terms of performance (i.e. dialog goal identi-
fication and conceptual validation capabilities) and complexity (i.e.
computational cost).

2. SYSTEM DESCRIPTION

The solutions that we are presenting in this paper have been explored
in the development of a conversational interface that allows users to
control a commercial Hifi audio system using natural language sen-
tences. The Hifi system is constituted by a compact disc (with a
charger of three discs), two tapes and a radio receiver. This system
can be normally controlled by an infrarred remote control. Instead,
users are going to control the system using a microphone. This in-
terface makes the translation of speech into the corresponding IrDA
commands needed to perform the desired actions according to the
user’s intention. A detailed description of the system can be found
in [1].

3. DATA COLLECTION

The database is made up of 463 control sentences collected from
different users. In each sentence the user addresses the system in
order to perform some actions.

Each sentence has been semantically tagged. A concept dictio-
nary has been defined by an expert trying to cover all the relevant
semantic categories in the domain. The resulting concepts can be
grouped into: “actions” to be performed over the system (e.g. to
play), “parameters” that can be configured in the system (e.g. the
volume), and their corresponding “values” (e.g. a number).

In summary, there are a total of 58 concepts comprising 22 ac-
tions, 16 parameters and 20 values. Additionally, each sentence has
been also tagged with its corresponding dialog goals according to
the user’s intention. A set of 15 goals has been defined according to
the available functionality. Table 1 shows an example.

Table 1. Database description: example sentence.

U: “Play the third track from the first cd and raise the volume.”
Concepts Dialog Goals

STATE ACTION=[play]
TRACK VALUE=[3]

TRACK PARAM=[track] “device selection”
DISC VALUE=[1] “playing parameters definition”

DEVICE VALUE=[cd] “source state modification”
DISC PARAM=[cd] “volume adjustment”

VOLUME ACTION=[+]
VOLUME PARAM=[volume]

4. DIALOG MANAGEMENT BASED ON BNS

The first task of the Dialog Manager (DM) module is to identify
the intention (i.e. dialogue goals) of the user considering the last
utterance together with the dialog context. Then, according to the
inferred goals the DM has to make a decision regarding how the
dialog should continue. Both tasks can be accomplished using BNs.

4.1. “Forward Inference”

BNs can be adopted to model the existing causal relation between the
goals and the concepts [1][2]. Typically, both of them are assumed
to be binary [3] (i.e. a concept is true or “present” only when it
is observed in the sentence). Thus, from the whole set of available
evidences, e.g. E = {C1 = 0, C2 = 1, ..., CN = 1} for N defined
concepts, a posterior probability P (Gi = 1|E) can be obtained for
each goal using the “Forward Inference” technique, FI [2][4].

Subsequently, a decision is made for each BN on the compari-
son of the posterior with a defined threshold, θ. As a result of that
comparison, one goal is “present” if the corresponding posterior is
over the threshold; otherwise the goal is “absent”.
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Table 2. Concept analysis used to drive the dialog.

P (Cj = 1|E∗) < θ P (Cj = 1|E∗)≥θ
Cj absent Cj unnecessary Cj missing
(Cj = 0) (No action) (Prompt to request Cj )

Cj present
Cj wrong Cj required

(Cj = 1)
(Prompt to clarify (Cj is stored

or notify about Cj ) in the dialog memory)

4.2. “Backward Inference”

After the FI process, and assuming the inferred results (i.e. those
goals which were decided to be “present”, Gi = 1) as new evi-
dences, Bayesian inference can be applied again but this time aimed
at the estimation of P (Cj = 1|E∗) (the probability that each con-
cept should be present) where E∗ = {G1 = 1, G2 = 0, . . . , GM =
1, C1 = 0, C2 = 1, . . . , CN = 1}. This process is known as the
“Backward Inference”, BI, technique [2].

Making a similar binary decision on the value of P (Cj =
1|E∗), it is possible to check whether that concept should be
“present” (i.e. P (Cj = 1|E∗) > θ) or not.

4.2.1. Concept analysis

The BI result can be compared with the actual occurrence of the
concept enabling the classification presented in Table 2.

As a result of that analysis [2] every concept can be properly
classified allowing the DM to perform a suitable action (a possi-
ble dialog proceeding strategy has been suggested below each re-
sult). For example, the system can drive the dialog prompting for
the “missing” concepts.

The accuracy of this analysis, as well as a correct identification
of the corresponding dialog goals, is of vital importance to ensure
the appropiate behaviour of the SDS. For instance, a possible miss-
classification may occur when considering a “required” concept as
“wrong”. In that case, the system would probably try to correct or
clarify a concept that actually is not erroneous but needeed to sat-
isfy the inferred goals. From this revealing example it is clear that
the resulting misbehavior from a wrong concept classification has a
disastrous impact on dialog regarding consistency, naturalness and
sucess.

5. BASELINE APPROACH: N GOAL SPECIFIC-BNS

The baseline approach [1][2][3] assumes the dialog goals to be con-
ditionally independent. Therefore, each corresponding BN is con-
sidered independently for each goal (left side of Figure 1).

5.1. Concept selection for BN development

In order to decide on which concepts should be part of each BN
model an Information Gain (IG) criterion has been used [3]. Us-
ing IG measures for a particular goal and each defined concept it is
possible to sort the list of concepts for that specific goal. For com-
pactness reasons, once the list is sorted, we simply select the top
M concepts (i.e. the most representative) which add up to a certain
percentage of the overall IG for each goal. Consequently, each BN
model only includes the subset of concepts (Cj) with the strongest
dependency of a particular goal (Gi) according to the considered %
of IG. The conditional probabilities that quantify those dependencies
are estimated tallying the counts from training data.

6. NEW APPROACH: THE FUSION BN

Approaching BI independently, just considering the local context for
each goal and thus only a subset of the whole evidence set, could
drive the DM to make wrong decisions. This is specially decisive
as we are considering multiple goals scenarios where the user typi-
cally refers to several dialog goals simultaneously. If each goal and
its corresponding BN are handled individually, then different results
according to Table 2 are possible for a particular concept depending
on which BN the BI process is applied to.

For example, assuming that both goals in Figure 1 have been
positively inferred trough FI, two different results are available for
C2. Thus, C2 could be “required” for G1 but “wrong” for G2 in-
stead. Opposite results would drive the analysis to different classifi-
cations of the same concept.

On the contrary a better solution is possible just merging all the
BNs into one (Figure 1). As a result of having a unique BN, a sin-
gle result is obtained for every concept conjunctly dependent on all
goal and concept evidences since only one BI process is performed
over the new larger BN. All goals are solved jointly in a common
scenario so that a concept could not be regarded differently for each
particular goal. Consequently, the main difference between the for-
mer approach and the new one is that both FI and BI results are
consistent with the whole dialog context.

6.1. The Fusion algorithm

When fusion happens, a new BN arise merging both original BNs
through their common concepts. Starting from the formerly obtained
N goal-specific BNs (i.e. baseline approach), we describe next the
basis for this fusion method.

1. Begin with a set FBN of N BNs, one per each defined goal
Gi consisting of the goal itself and the top M concepts, i.e.
S(Gi), needed for the considered % of IG.

2. For each distinct pair of BNs, BN(x) and BN(y), check
whether fusion is possible, i.e. if S(x) ∩ S(y) �= ∅, in which
case:

(a) Merge both BNs into a new larger BN, labeled BN(z)
where z = {x, y}, as described before.

(b) Remove BN(x) and BN(y) from FBN replacing them
by the new BN (i.e. insert BN(z) into FBN ).

3. Repeat 2 while there are still possible fusions left to do.

After applying the fusion algorithm to the N initial BNs, it could
be possible to obtain not a single BN but several of them. Indeed,
there could be some goals that the model considers conditionally
independent as they do not have any concept in common. In anycase,
the corresponding analysis to every obtained fusion BN would have
previously mentioned drawbacks solved.

Fig. 1. Detail of the BN merging.
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6.1.1. Optimization of the BN model cost

The fusion process always produces more complex BNs. Therefore,
we need to ensure their trainability (thus avoiding sparsely trained
BNs) and computational tractability. To that effect, a study on the
optimum direction of the arcs that model the existing dependencies
betweens goals and concepts can be done.

The independence assertions in a BN are important to reduce
the complexity of inference [4]. On the other hand, the cost of the
model, defined as the number of parameters of the corresponding
conditional probability tables, may significantly vary according to
the direction of the considered dependencies.

If we compute the cost of the resulting BN model from Figure 1
(details are presented below) for both possible options (each term of
the sum is a power of two since we are assuming binary variables),
we can conclude that “goal → concept” dependencies are better (and
less costly) for this particular example. This result usually holds for
BNs applied to DM. If the fusion process results in several BNs, this
optimization should be done individually for each resulting BN.

Costconcept→goal = 24

|{z}

P (G1|C1,C2,C3)

+ 23

|{z}

P (G2|C2,C4)

+

+ 21

|{z}

P (C1)

+ 21

|{z}

P (C2)

+ 21

|{z}

P (C3)

+ 21

|{z}

P (C4)

= 32

Costgoal→concept = 21

|{z}

P (G1)

+ 21

|{z}

P (G2)

+

+ 22

|{z}

P (C1|G1)

+ 23

|{z}

P (C2|G1,G2)

+ 22

|{z}

P (C3|G1)

+ 22

|{z}

P (C4|G2)

= 24

7. EXPERIMENTAL SETUP

A stratified 10-fold cross-validation on the whole data set has been
performed for all the experiments. Cost optimization has also been
applied to baseline BN models. Table 3 shows the resulting cost for
each tested solution.

For benchmarking purposes we considered first the 100% of IG
(“ALL” model) and then compared it with lower percentages. In
order to estimate the optimum threshold, several values have been
tested from 0, 1 to 0, 9 using a 0, 1 step.

We have included the typical goal or topic classification perfor-
mance measure, the “F-measure” [5] estimated as a function of the
“recall”, R, and “precision”, P measures [5]. We gave R and P
equal importance (i.e. β = 1).

We have not used the FI results when performing the BI process
(i.e. only tagged goals are part of the set of available evidences).
Hence FI errors do not affect to BI performance since both processes
have been evaluated independently.

All the sentences in the dataset are assumed to be “self-
contained”. Therefore, we assume that there is not any “missing”

Table 3. Estimated cost (# of params) for each solution.

IG% Baseline Fusion

ALL 2670, 00 2.883.614, 04
90 1727, 20 787.924, 81
80 1284, 80 398.721, 21
70 940, 80 208.736, 80
60 672, 80 71.788, 80
50 461, 20 11.774, 20

concept regarding the dialog goals that each sentence has been
labelled with (i.e. all tagged concepts regarded as “required”).

8. EVALUATION RESULTS AND DISCUSSION

8.1. Fusion BN approach evaluation

Figures 2 and 3 shows respectively the FI and the BI results obtained
for different IG%. As it can be observed in both figures, better re-
sults are obtained as the IG% decreases. This result could seem a bit
surprising. Adding a greater number of concepts to a BN we are sup-
posedly able to model more accurately the probabilistic dependen-
cies between concepts and goals. Unfortunately, our models have
become too complex by comparison to the amount of data available.

Both figures also illustrate classical R-P trade-off. R increases
monotonically as the decision threshold increases, whereas P de-
creases. This behavior can be intuitively deduced from the parabolic
shape of the curves (max accuracy is well defined near 0, 4 thresh-
old). Best FI and BI results are 88, 14% (50% IG model) and
81, 00% (60% IG model) respectively.

Keeping the R and P trade-off in mind, we decided to com-
bine both FI and BI measures through a new F-measure estimation.
Therefore, we used the FI and the BI results, respectively, in place
of R and P and adopted β = 1 to ensure that we were maximiz-
ing both. Subsequently, following the typical early stopping method
we reached a maximum combined performance of 84, 09% (60% IG
model for a 0, 5 threshold).

Fig. 2. FI results for fusion approach.

Fig. 3. BI results for fusion approach.
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Fig. 4. Combination of FI and BI results for fusion approach.

Figure 4 shows, for a 0, 5 threshold, the relative variations when
the % of IG changes as stated in each column set. In all cases a
10% of absolute reduction of IG is performed. Relative variations
regarding cost, FI and BI accuracies and also their combination are
presented. Hence, the “100 → 90” results correspond to the com-
parison between the “ALL” (100%) and the 90% of IG models. As
it can be observed, the relative improvement regarding the FI and BI
combination (“Both F-measure” in the figure) becomes negative (i.e.
decreases a 0, 84%) when considering a 50% of IG thus defining our
stop point. Nonetheless, the 50% IG model is 83, 60% less costly
than the 60% IG model which could be consider a fair trade-off.

8.2. Baseline approach comparison

Finally, figures 5 and 6 respectively show the best FI and BI results
obtained for both approaches.

Proceeding in the same way, similar experiments to those pre-
viously presented were performed for the baseline approach. How-
ever, in order to fairly compare both approaches, for each % of IG
model we directly combined the best FI and BI results regardless of
the threshold we used to obtain them. Consequently, the best com-
bined result for the fusion approach could be slightly improved up
to 84, 22%, with a 60% of IG model that performs 87, 70% FI ac-
curacy considering a 0, 4 threshold and 81, 00% BI accuracy with a
0, 5 threshold. On the other hand, the best combined result for the
baseline approach is obtained for the “ALL” model and rises up to
71, 20% by considering respectively 0, 9 and 0, 3 as the FI and BI
thresholds (FI 92, 29% and BI 57, 96%). The best fusion approach
result (84, 22%) means a 13, 02% of combined accuracy improve-
ment compared to the baseline approach.

As it can be observed in the Figures, the baseline approach out-
performs the fusion approach regarding FI performance by a 4, 59%.
On the contrary, regarding BI the fusion approach clearly outperfoms
the baseline by a substantial margin, a 23, 04% difference. That dif-
ference tips the balance in fusion’s favor as it can be checked from
both overall combined results.

However, as expected, the fusion approach is more costly than
the baseline one. This is clear from costs reported in Table 3 al-
though the complexity increase needed to outperform baseline mod-
els is not that important. As it can be deduced from the table, the
least costly fusion model (50% IG) is “only” 4, 4 times more expen-
sive than the best baseline model (“ALL”) but its combined perfor-
mance is still significantly better (i.e. 83, 25% obtained by combin-
ing 88, 14% and 78, 87%, both by considering a 0, 5 threshold).

Fig. 5. FI results comparison between both approaches.

Fig. 6. BI results comparison between both approaches.

9. CONCLUSIONS

This work validates a new BN fusion model. The proposed fusion
method provides a single BN that ensures that both the FI and the BI
processes are performed within a whole common evidence context.
The novel approach has been compared with a multiple goal-specific
BNs based approach. Thanks to a much better concept classifica-
tion (BI accuracy), the fusion approach results in a better overall (or
combined) performance (roughly a 13% better) in spite of its slightly
worse goal classification (FI accuracy). New challenges arise as new
approaches are possible, like using different models for FI and BI, or
incorporating MDL techniques [3] to obtain enhanced fusion BNs.
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