
QUERY PARSING FOR VOICE-ENABLED MOBILE LOCAL SEARCH

Junlan Feng and Srinivas Bangalore

AT&T Labs-Research, 180 Park Avenue, Florham Park, NJ 07932, USA

ABSTRACT

With the exponential growth in the number of mobile devices, voice
enabled local search is emerging as one of the most popular appli-
cations. Although the application is essentially an integration of au-
tomatic speech recognition (ASR) and text or database search, the
potential usefulness of this application has been widely acknowl-
edged. In this paper, we present a data-driven approach to voice
query parsing, that segments the input query into several fields that
are necessary for high-precision local search. We also demonstrate
the robustness of our approach to ASR errors. We present an ap-
proach for exploiting multiple hypotheses from ASR, in the form of
word confusion networks, in order to achieve tighter coupling be-
tween ASR and query parsing. A confusion-network based query
parsing outperforms ASR 1-best based query-parsing by 2.6% abso-
lute.

Index Terms— Voice Search, Robustness to ASR errors

1. INTRODUCTION

Local search specializes in serving geographically constrained
search queries on a structured database of local business listings.
Most text-based local search engines expect a user to submit a
search query in two text fields: the “SearchTerm” (e.g. Best Chinese
Restaurant) and the “LocationTerm” (e.g. a city, state, street address,
neighborhood etc.) fields. Most voice-enabled local search systems
employ a two-turn dialog strategy. In the first turn, the system
solicits from the user a LocationTerm followed by a SearchTerm [1].

Although the two-field interface has been widely accepted, it
has several limitations for voice-enabled mobile search. First, most
mobile devices are location-aware. When users search for businesses
nearby, it is encumbering for them to specify the LocationTerm. Sec-
ond, it’s not always straightforward for users to be aware of the dis-
tinction between these two fields. For many local search text queries,
we have observed the SearchTerm field contains location informa-
tion as well. For example, ”restaurants near Manhattan” was input
for SearchTerm and “NY NY” for LocationTerm. For voice-based
local search, it is more natural for users to specify queries in a single
utterance. Finally, many queries contain constraints beyond location
such as restaurants that deliver and night clubs open 24 hours. In
these two examples, restaurants and night clubs are the main query
subjects while that deliver and open 24 hours are constraints. It
would be very cumbersome to enumerate each constraint as a differ-
ent text field or a dialog turn. An interface that allows for specifying
constraints in a natural language utterance would be most conve-
nient.

In this paper, we introduce a voice search system that allows
users to specify search requests in a single natural language utter-
ance. The output of ASR is then parsed by a query parser into
three fields: LocationTerm, SearchTerm, and Filler. We use a lo-
cal search engine, http://www.yellowpages.com/, which accepts the

SearchTerm and LocationTerm as two query fields and returns the
search results. We present a method for parsing the voice query
into different fields with particular emphasis on exploiting the ASR
output, beyond 1-best hypothesis. We demonstrate that by parsing
word confusion networks, the accuracy of the query parser can be
improved.

The paper outline is as follows. In Section 2, we discuss some
of the related threads of research relevant for our task. In Section 3,
we motivate the need for a query parsing module in voice search sys-
tems. We present the details of the query parsing model in Section 4
and discuss experimental results in Section 5. We summarize our
results in Section 6.

2. RELATEDWORK

The role of query parsing in one aspect can be considered as sim-
ilar to spoken language understanding(SLU) in dialog applications.
However, voice local search systems currently do not have SLU as a
separate module , instead the words in the 1-best ASR output are di-
rectly used for search. In previous work, BBN proposed a two-state
HMM approach to do query understanding and search in the same
step. One state is called General English (GE) state for capturing car-
ried phrases and ASR errors [2]. The other state is for Listing Name.
Parameters for this model are learned from transcribed utterances.
Most other voice search applications applied the traditional Infor-
mation Retrieval approach, vector space model (VSM), for search.
In [3], the authors enhanced VSM by deemphasizing term frequence
in Listing Names and using character level uni/bi-gram terms instead
of word level. The aim was to be more tolerant to ASR errors. This
approach improves recall but not precision.

There are two other threads of relevant research literature.
Named entity (NE) extraction attempts to identify entities of interest
in speech or text. Typical entities include locations, persons, organi-
zations, dates, times monetary amounts and percentages [4]. Most
approaches for NE tasks rely on machine learning approaches using
annotated data. These algorithms include a hidden markov model,
support vector machines, Maximum entropy, and conditional ran-
dom fields . With the goal of improving robustness to ASR errors,
[5] described a Finite State Machine based approach to take as input
ASR n-best strings. Although our task of query segmentation has
similarity with NE tasks, it is arguable whether the SearchTerm is a
well-defined entity, since a user can provide varied expressions as
they would for general web search. More importantly the discrim-
inative approaches used in NE literature have not been applied to
weighted lattices produced by ASR.

The other related literature is natural langague interface to
database(NLIDBs), which had been well-studied between 1960s
and 1980s [6]. The aim was to map a natural language query into
semantic components of a database, such as table, field, Value, Re-
lation, Aggregate (COUNT,SUM,MIN, MAX), Logical operations
(AND, OR, NOT). The task was significantly more ambitious than

4777978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



1−best
WCN

Query
Parsed

Query
Parser

Speech
SearchASR

Fig. 1. Architecture of a voice search system

our current task. According to their methodology, these systems
were categorized as pattern matching, syntax-based, and grammar-
based systems. Issues such as modifier attachment still remain as
a challenging problem in our task. We incorporate some of the
techniques from that literature in our query parser.

3. VOICE SEARCH SYSTEM ARCHITECTURE

Figure 1 illustrates the architecture of our voice search system1. As
expected the ASR and Search components perform speech recogni-
tion and search tasks. In addition to ASR and Search, we also inte-
grate a query parsing module between ASR and Search for a number
of reasons.

First, we prefer to reuse the current local search engine
http://www.yellowpages.com/, in which many text normalization,
task specific tuning, business rules, and scalability issues have been
well addressed. Given that, we need a module to translate ASR
output to the query syntax that the local search engine supports.

Second, current ASR 1-best output is not accurate enough when
users input speech from a mobile device, particularly from a noisy
environment. However, ASR word confusion networks which com-
pactly encode multiple word hypotheses with their probabilities have
much higher word accuracy compared to the 1-best output. We be-
lieve a dedicated understanding module is necessary to reevaluate
ASR output for the purpose of maximizing search performance. In
this paper, we show promising results using richer ASR output be-
yond 1-best hypothesis.

Lastly, as mentioned above the query parser we are designing not
only provides the search engine “what” and “where” information, it
also further segments the query to phrases of certain concepts. For
the example we used above night club open 24 hours, we segment
it to night club and open 24 hours. Query segmentation has been
considered as a key step to achieving higher retrieval accuracy [7].

In the next section, we present our proposed approaches of how
we parse ASR output including ASR 1-best string and lattices in a
scalable framework.

4. A SCALABLE QUERY PARSING APPROACH

As we discussed above, there are many potential approaches such
as those for NE extraction we can explore for parsing a query. In
the context of voice local search, users expect overall system re-
sponse time to be similar to that of web search. Due to the relatively
long ASR latency, it leaves no room for a slow parser. On the other
hand, the parser needs to be tightly synchronized with changes in
the listing database, which is updated at least once a day. Hence, the
training process also needs to be fast to meet the requirements. We
propose in this section a probablistic query parsing approach using
text index and search. We start by presenting a model for parsing
ASR 1-best and extend the approach to consider ASR lattices.

1We do not address the issue of presentation of results in this paper.

4.1. Query Parsing Using ASR 1-best output

4.1.1. The Problem

We formulate the query parsing task as follows. A 1-best ASR out
is a sequence of words: Q = q1, q2, . . . , qn. The parsing task is to
segment Q into a sequency of concepts. Each concept can possibly
span multiple words. Let S = s1, s2, . . . , sk, . . . , sm be one of
the possible segmentations comprising of m segments, where sk =
qi

j = qi, . . . qj , 1 ≤ i ≤ j ≤ n + 1. The corresponding concept
sequence is represented as C = c1, c2, . . . , ck, . . . , cm.

For a given Q, we are interested in searching for the best seg-
mentation and concept sequence (S∗, C∗) as defined by Equation 1,
which is rewritten using Bayes rule as Equation 2. The prior proba-
bility P (C) is approximated as using a h-grammodel on the concept
sequence as shown in Equation 3. We model the segment sequence
generation probability P (S|C) as shown in Equation 4, using in-
depdence assumptions. Finally, the query terms corresponding to a
segment and concept are generated using Equation 5. The condi-
tional probablity P (qi

j |ck) can be considered as Relevancy defined
in (6).

(S∗, C∗) = argmax
C

P (S, C) (1)

= argmax
S,C

P (C) ∗ P (S|C) (2)

P (C) = P (c1) ∗
Y

k

= 1m P (ck|ck−1, ...ck−h+1) (3)

P (S|C) =

mY

k=1

P (sk | ck) (4)

P (sk|ck) = P (qi
j |ck) = Pck (qi) ∗

jY

l=i+1

Pck (ql | ql−k+1
l−1 ) (5)

To train this model, we only have access to text query logs
from two distinct fields (SearchTerm, LocationTerm) and the listing
database. We built a SearchTerm corpus by including valid queries
users typed to the SearchTerm field and all the unique business
listing names in the listing database. Valid queries are those queries
that the search engine returns at least one business listing result or
a business category. Similarly, we built a corpus for LocationTerm
by concatenating valid LocationTerm queries and unique addresses
including street address, city, state, and zip-code. We also built a
small corpus for Filler, which contains common carrier phrases and
stop words. The generation probabilities as defined in (4) can be
learned from these three corpora.

In the following section, we describe a scalable way of imple-
mentation using standard text indexer and searcher.

4.1.2. Probabilistic Parsing using Text Search

We explored using standard text indexing and search engines for
query parsing. More specifically, we use Apache-Lucene in our ex-
periments [8]. Lucene is an open-source full-featured text search
engine library. Both lucene indexing and search are efficient enough
for our tasks. It takes a few milliseconds to return results for a com-
mon query. Indexing millions of search logs and listings can be done
in minutes. Reusing text search engines allows a seamless integra-
tion between query parsing and search.

We changed the tf.idf based document-term relevancy met-
ric in Lucene to reflect pck (qi

j).

Relevancy(qi
j , dk) = pck (qi

j) =
tf(qi

j , dk) + σ

N
(6)

4778



0 1

gary/0.323

cherry/4.104

dairy/1.442

jerry/3.956

2

crites/0.652

christ/2.857

creek/3.872

queen/1.439

kreep/4.540

kersten/2.045

3springfield/0.303

in/1.346
4springfield/1.367

_epsilon/0.294
5/1missouri/7.021

Fig. 2. An example confusion network for ”Gary crities Springfield missouri”

where dk is a corpus of examples we collected for the concept ck;
tf(qi

j , dk) is referred as the term frequency, the frequency of qi
j in

dk;N is the number of entries in dk; σ is an empirically determined
smoothing factor.

When tf(qi
j , dk) is zero for all concepts, we loosen the phrase

search to be proximity search, which searches words in qi
j within

a specific distance away. For instance, ”burlington west virginia”
∼ 5 will find entries that include these three words within 5 words
of each other. tf(qi

j , dk) is discounted for proximity search. For a
given qi

j , we allow a distance of dis(i, j) = (j − i + shift) words.
shift is a parameter that is set empirically.

pck (qi
j) =

tf(qi
i ∼ dis(i, j), dk) + σ

N ∗ shift
(7)

Inputs:
• A set of K concepts:C = c1, c2, . . . , cK , in this paper,

K = 3, c1 = SearchTerm, c2 = LocationTerm,
c3 = Filler

• Each concept ck associates with a text corpus: dk. Cor-
pora are indexed using Lucene Indexing.

• A given query: Q = q1, q2, . . . , qn

• A given maximum number of words in a query segment:
Ng

Parsing:
• Enumerate possible segments inQ up toNg words long:

qi
j = qi, qi+1, . . . , qj , j >= i, |j − i| < Ng

• Obtain pck (qi
j)) for each pair of ck and qi

j using Lucene
Search

• Boost pck (qi
j)) based on the position of qi

j in the query
pck (qi

j) = pck (qi
j) ∗ boostck (i, j, n)

• Search for the best segment sequence and concept se-
quence using Viterbi search

Fig.3. Parsing procedule using Text Indexer and Searcher

Figure 3 shows the procedure we use for parsing. It enumerates
possible segments qi

j of a given Q. It then obtains pck (qi
j) using

Lucene Search. We boost pck (qi
j)) based on the position of qi

j in Q.
In our case, we simply set: boostck (i, j, n) = 3 if j = n and ck =
LocationTerm. Otherwise, boostck (i, j, n) = 1. The algorithm
searches for the best segmentation using the Viterbi algorithm. Out-
of-vocabulary words are assigned to c3 (Filler).

4.2. Query Parsing using ASR lattices

Word confusion networks (WCNs) [6] is a compact lattice for-
mat. It aligns a speech lattice with its top-1 hypothesis, yielding a
“sausagez”-like approximation of lattices. It has been used in ap-
plications such as word spotting and spoken document retrieval. In
the following, we examine how we use WCNs for our query parsing
task.

Figure 2 shows an example of a pruned WCN . For each word
position, there are multiple alternatives and their associated negative
log posterior probabilities. The 1-best path is “Gary Crites Spring-
field Missouri”. The reference is “Dairy Queen in Springfield Mis-
souri”. ASR misrecognized “Dairy Queen” as “Gary Cities”. But
the correct words “Dairy Queen” do appear in the lattice though
with lower probability. The challenge is to select the correct ones
from the lattice by considering both ASR posterior probabilities and
parser scores.

The hypotheses inWCN have to be reranked by the Query Parser
to prefer those that have meaningful concepts. Clearly, each busi-
ness name in the listing database corresponds to a single concept.
However, the long queries from query logs tend to contain multi-
ple concepts. For example, a frequent query is ”night club for 18
and up”. We know ”night club” is the main subject. And ”18 and
up” is a constraint. Without matching ”night club”, any match with
”18 and up” is meaningless. The data fortunately can tell us which
words are more likely to be a subject. We rarely see ”18 and up”
as a complete query. Given these observations, we propose calculat-
ing the probability of a query term to be a subject. ”Subject” here
specifically means a complete query or a listing name. For the ex-
ample shown in Figure 1, we observe the negative log probability
for ”Dairy Queen” to be a subject is 9.3. ”Gary Crites” gets 15.3.
We refer to this probability as subject likelihood. Given a candidate
query term s = w1, w2, ..wm, we represent the subject likelihood
as Psb(s). In our experiments, we estimate Psb using relative fre-
quency normorlized by the length of s. We use the following formula
to combine it with posterior probabilities in WCNs Pcf (s):

P (s) = Pcf (s) ∗ Psb(s)
λ

Pcf (s) =
Y

j=1,...,nw

Pcf (wi)

where λ is used to flatten ASR posterior probabilities and nw is the
number of words in s. In our experiments, λ is set to 0.5. We then
re-rank ASR outputs based on P (s). We will report experimental
results with this approach. ”Subject” is only related to SearchTerm.
Considering this, we parse the ASR 1-best out first and keep the
Location terms extracted as they are. Only word alternatives cor-
responding to the search terms are used for reranking. This also

4779



Data Sets SearchTerm Extraction Accuracy LocationTerm Extraction Accuracy
Input ASR-1best WCN Oracle Path Transcription ASR 1best WCN Oracle Path Transcription
Test1 57.7% 59.6% 65.0% 93.0% 79.4% 79.4% 83.5% 96.1%
Test2 74.1% 76.7% 81.6% 97.8% 88.8% 88.8% 93.0% 98.5%
Test3 62.2% 63.8% 68.8% 96.0% 86.5% 86.5% 88.7% 96.7%

Table 1. Parsing performance on three data Sets

improves speed, since we make the confusion network lattice much
smaller. In our initial investigations, such an approach yields promis-
ing results as illustrated in the next section.

5. EXPERIMENTS

We have access to text query logs consisting of 18 million queries
to the two text fields: SearchTerm and LocationTerm. In addition
to these logs, we have access to 11 million unique business listing
names and their addresses. We use the combined data to train the
parameters of our model as discussed in the previous section. We
tested our approaches on three data sets, which in total include 2686
speech queries. These queries were collected from users using mo-
bile devices for different time periods. Labelers transcribed and an-
notated the test data using LocationTerm and SearchTerm tags.

Data Sets Number of Speech Queries WACC
Test1 1484 70.1%
Test2 544 82.9%
Test3 658 77.3%

Table 2. ASR Performance on three Data Sets

We use a trigram-based ASR trained on the query logs and list-
ing data sets. Table 2 shows the ASR performances on three data
sets. We achieved 70.1% word accuracy on Test1. Test1 is a hard
dataset, where many speakers are non-native and a big percentage of
queries are not intended for local search. We observed 82.9% word
accuracy on Test2 and 77.3% on Test3.

Table 1 reports parsing performance using the proposed ap-
proach. We measure parsing performance in terms of extraction
accuracy. In our task, we have two non-filler slots, namely, Lo-
cationTerm and SearchTerm. Table 1 reports extraction accuracy
for both of them. The “Transcription” columns present the parser’s
performances on transcriptions. As expected, the parser’s perfor-
mance heavily relies on ASR word accuracy. We achieved lower
parsing performance on Test1 than other test sets due to lower ASR
accuracy on this test set. The promising aspect is we consistently
improved SearchTerm extraction accuracy when using pruned WCN
as input. The performance under “Oracle path” shows the upper
bound for the parser using the oracle path2 from the pruned WCN.
We pruned WCN by keeping only those arcs that are within cthresh
of the lowest cost arc between two states. Cthresh = 4 is used in
our experiments. For Test2, the upper bound improvement is 7.5%
(81.6%-74.1%) absolute. Our proposed approach using pruned
WCN achieved 2.6% improvement, which is 35% of the maximum
potential gain. We reached 26% of the upper bound improvement
on Test1 and 24% on Test3. Our approach didn’t take advantage
of WCN for LocationTerm extraction, hence we obtained the same
performance with WCNs as using ASR 1-best.

2Oracle text string is the path in the WCN that is closest to the reference
string in terms of Levenshtein edit distance

6. SUMMARY

This paper describes a probabilistic approach for parsing ASR 1-best
and lattice output into fields such as SearchTerm and LocationTerm
for local search. We implemented this approach using Lucene, a
full-featured standard text engine library. Our data resources include
millions of query logs and business listing entries. We evaluated our
approach on three test sets of voice queries and achieved SearchTerm
extraction accuracy of 59.6%, 76.7% and 63.8% and LocationTerm
extraction accuracy of 79.4%, 88.8%, and 86.5%. We observed con-
sistent improvement using ASR WCNs.

Our near-term future work will be evaluating Search perfor-
mance. Both ASR and Query parser make errors, however these
errors are not equally important in terms of their impact on search.

7. ACKNOWLEDGEMENTS

We are grateful to Benson Tang, Remi Zajac, Premkumar Mani,
Mazin Gilbert, Vincent Goffin, and Barbara B. Hollister for their
help in discussing and improving the ideas presented in this paper.

8. REFERENCES

[1] Y.Wang, D.Yu, Y. Ju, and A. Alex, “An introduction to voice
search,” Signal Processing Magzine, vol. 25, no. 3, pp. 29–38,
2008.

[2] P. Natarajan, R. Prasad, R.M. Schwartz, and J. Makhoul, “A
scalable architecture for directory assistance automation,” in
ICASSP 2002, 2002.

[3] G.Zweig D.Yu Y.-C.Ju Y.-Y.Wang and A.Acero, “Automated
directory assistance system - from theory to practice,” in Inter-
speech, 2007.

[4] F. Kubala, R. Schwartz, R. Stone, and R. Weischedel, “Named
entity extraction from speech,” in in Proceedings of DARPA
Broadcast News Transcription and Understanding Workshop,
1998, pp. 287–292.

[5] P. Nocera B. Favre, F. Bechet, “Robust named entity extraction
from large spoken archives,” in Proceeding of HLT 2005, 2005.

[6] I. Androutsopoulos, “Natural language interfaces to databases
- an introduction,” Journal of Natural Language Engineering,
vol. 1, pp. 29–81, 1995.

[7] B. Tan F. Peng, “Unsupervised query segmentation using gener-
ative language models and wikipedia,” in Proceedings of WWW-
2008, 2008.

[8] Erik Hatcher and Otis Gospodnetic, Lucene in Action (In Action
series), Manning Publications Co., Greenwich, CT, USA, 2004.

4780


