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ABSTRACT

The detection of laughter in conversational interaction presents an
important challenge in meeting understanding, important primarily
because laughter is predictive of the emotional state of participants.
We present evidence which suggests that ignoring unvoiced laugh-
ter improves the prediction of emotional involvement in collocated
speech, making a case for the distinction between voiced and un-
voiced laughter during laughter detection. Our experiments show
that the exclusion of unvoiced laughter during laughter model train-
ing as well as its explicit modeling lead to detection scores for voiced
laughter which are much higher than those otherwise obtained for
all laughter. Furthermore, duration modeling is shown to be a more
effective means of improving precision than interaction modeling
through joint-participant decoding. Taken together, the final detec-
tion F-scores we present for voiced laughter on our development set
comprise a 20% reduction of error, relative to F-scores for all laugh-
ter reported in previous work, and 6% and 22% relative reductions
in error on two larger datasets unseen during development.

Index Terms— Laughter detection, Speech detection, Vocal in-
teraction, Meetings.

1. INTRODUCTION

Laughter occurs surprisingly frequently in meetings; analysis has
demonstrated that it accounts for almost 10% of vocalization effort
by time [1]. Its detection in conversational interaction presents an
important challenge in meeting understanding, as laughter has been
shown to be predictive of both emotional valence [2] and activa-
tion/involvement [3, 4].

Group laughter detection was first explored in [5], but its de-
tection on nearfield channels and its correct attribution to specific
participants has only recently been attempted [6, 7]. Authors of the
latter reported that clearly audible laughter, sufficiently long in du-
ration and temporally distant from the laugher’s speech, can be de-
tected with equal error rates below 10% when a priori channel ac-
tivity knowledge is available. Although this represents a significant
milestone, it is not clear how predictive of higher-level phenomena
this subset of laughter is, relative to all laughter present.

The aim of the current work is the detection and participant-
attribution of all voiced laughter on close-talk microphone channels
in meetings, without reliance on prior knowledge of channel activ-
ity. For our purposes, voiced laughter is that which involves vocal
fold excitation at any time during its production. It has been shown
[8, 9] that voiced and unvoiced laughs are deployed contrastively un-
der naturally occurring conditions, and there is some recent evidence
[4] for meetings that voiced laughter, which accounts for the major-
ity of laughter by time and count, is more predictive of emotional

involvement in speech than is all laughter. By way of motivation, we
explore this claim further in Section 3.

The remainder of this paper is organized as follows. We first de-
scribe in Section 2 the data; it is the same as that in [5, 6, 7, 10]. Sec-
tion 4 describes our baseline laughter detector, whose performance
is analyzed in Section 5. Experiments and a discussion of the results
are presented in Sections 6 and 7, respectively. Section 8 summa-
rizes this contribution.

2. DATA

As in other work on laughter detection in naturally occurring meet-
ings [5, 6, 7, 10], we use the ICSIMeeting Corpus [11]. We retain the
same division of the Bmr meetings into TRAINSET and DEVSET as
proposed therein; we also report numbers for unseen EVALSET data,
consisting of all of the Bed and Bro meetings.

The reference speech segmentation used in this work comes
from the ICSI MRDA Corpus [12]; inter-word gaps shorter than
0.3 s were bridged. The reference segmentation of laugh bouts [9]
comes from [13, 1]. Intervals during which a participant both speaks
and laughs, known as “speech-laughs” [14], have been mapped to
speech only, such that the categories of silence N , speech S , and
laughter L are mutually exclusive.

3. RELATING LAUGHTER TYPE TO EMOTION

In this section, we aim to motivate the need to treat voiced and un-
voiced laughter separately. The presence of voicing makes these
two types of laughter acoustically distinct [9], but the two have also
been shown to incur different degrees of simultaneous vocalization
from multiple participants and to occur in different locales relative
to the laugher’s speech [1]. In particular, in [4], it was shown that
voiced laughter appears to be more relevant to the inference of emo-
tional involvement in speech than does all laughter. We explore this
correlation further in Table 1, which shows experiments in which
60-second intervals of ICSI meetings were classified as either con-
taining emotionally involved speech or not containing emotionally
involved speech. The details of that classifier can be found in [4].

Panel ❶ in Table 1 lists accuracies obtained by guessing; in the
first line, we show the accuracy obtained by guessing randomly, ac-
cording to training set priors. These accuracies are provided to en-
able comparison with [3], where chance-corrected accuracies were
provided for a similar task. The second line lists the much higher
accuracies obtained by always guessing the majority class, to which
all other numbers in the table should be compared.

In panel ❷, we reproduce the numbers found in [4], and ad-
ditionally show accuracies obtained using a laughter segmentation
from which simultaneously produced speech is excluded (L − S).
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Accuracy, %Segmentation
train dev test

guess, priors 61.3 60.9 61.2❶
guess, majority 73.7 72.9 73.7
S 72.7 74.8 75.2
L ∪ S 75.5 78.0 77.7

❷ L 79.2 80.4 80.6
L ∩ S 84.3 82.7 83.0
L − S 79.5 80.4 80.8
LU 77.7 76.4 77.4
LV ∪ S 74.7 76.3 76.5

❸ LV 80.2 81.2 81.4
LV ∩ S 84.4 82.9 85.6
LV − S 80.3 81.5 81.4

Table 1. Accuracy of SVM classification of 60-second meeting in-
tervals as either containing or not containing involved speech, based
on features drawn from several logical combinations of the speech
and laughter reference segmentations. Numbers in italics are taken
from [4], Table 1. “train”, “dev”, and “test” represent a different split
of the corpus from that used for laughter detection in this work.

The results show that speech-laughs are particularly informative of
temporally proximate involved speech, but other laughter also yields
accuracies significantly exceeding majority-class guessing.

Panel ❸ shows several numbers not presented in [4]. In partic-
ular, we show classification accuracies for unvoiced laughter (LU );
these are significantly lower than those for voiced laughter (LV , in
panel❷), as well as for all laughter (L ≡ LU ∪LV ). Also shown are
several logical combinations of voiced laughter with speech, and all
except LV ∪S exhibit accuracies which are higher than those of the
corresponding combinations involving all laughter (L, in panel ❷).

Taken together, these observations indicate that voiced laugh-
ter, as opposed to all laughter, is more informative of the emotional
involvement exhibited in temporally proximate verbal production.

4. BASELINE LAUGHTER DETECTION SYSTEM

For the current work, we produce a baseline independent-participant
vocal activity detector (VAD) based on our previous work on de-
tecting the vocal activity state of all participants jointly [10]. The
decoder operates at a frame step and a frame size of 100 ms [15].
The state of each participant evolves independently, along licensed
trajectories of the hidden Markov model topology in Figure 1. Min-
imum duration constraints T(min) = {TS

(min), T
L
(min), T

N
(min)} as

shown in the figure were tuned to DEVSET in an earlier effort [10].
Each of S , L, and N is modeled by a 64-component Gaus-

sian mixture model (GMM), defined over a feature vector of 41
elements. These include the first 13 Mel-frequency cepstral coef-
ficients, channel-normalized using cepstral mean subtraction, their
first- and second-order differences, and two features, known as min-
imum and maximum normalized log-energy differences (NLEDs)
[16], used to mitigate the effects of crosstalk [17]. Transitions are
governed by bigram probabilities, learned from the best forced-
alignment Viterbi pass over all meetings in TRAINSET.

For completeness, in what follows we contrast the baseline
independent-participant decoder performance with that of the joint-
participant decoder introduced in [10]. In that system, the HMM
topology was the Cartesian product of the topology shown in Fig-
ure 1, and decoding proceeded for all participants simultaneously,

N

N

N

L

L

L

L

S

S

Fig. 1. Baseline HMM topology for 3-state VAD detection. S , L,
andN represent speech, laughter, and silence, respectively.

allowing for inter-participant constraints to be directly modeled. To
render search tractable, we enforced maximum simultaneous vo-
calization constraints such that e.g. at no time could more than 2
participants be speaking, or more than 3 participants be laughing.

5. ANALYSIS OF BASELINE PERFORMANCE

The performance of the baseline independent-participant and joint-
participant decoders on DEVSET is shown in Table 2. For both sys-
tems, the majority of errors by absolute time is due to the misclassi-
fication of silence N as laughter L. For the independent-participant
decoder, the proportion of hypothesized laughter which is neither
laughter nor speech is 70.8%; it is 62.6% for the joint-participant
decoder. We note that a main difference between the two baseline
decoders is that the independent-participant decoder hypothesizes
more laughter and speech overall; we suspect this is largely due to
crosstalk, more of which is eliminated in joint-participant decoding.

Indep Decoder Hypos Joint Decoder Hypos Σ
N L S N L S

N 655.8 46.5 13.9 685.4 22.9 7.8 716.2
L′

U 0.9 4.2 0.2 2.8 2.4 0.2 5.4
L′

V 1.1 8.9 0.4 3.6 6.5 0.3 10.4
LS 0.0 0.3 0.5 0.1 0.2 0.5 0.8
S ′ 3.4 5.8 85.3 11.9 4.5 79.0 94.4
Σ 661.2 65.7 100.4 702.9 36.6 87.8 827.2

Table 2. Confusion matrices for baseline independent-participant
and joint-participant decoders on DEVSET. Reference labels, with
laughter L broken down into unvoiced laughter excluding speech-
laughs (L′

U ), voiced laughter excluding speech-laughs (L′
V ), and

speech-laughs (LS ≡ L ∩ S) are shown in rows; S ′ denotes speech
excluding speech-laughs. Correctly classified time is shown in bold.
All quantities are in minutes.

6. EXPERIMENTS

As analysis of the baseline independent-participant decoder shows,
the majority of hypothesized laughter is actually silence. We suspect
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that there are two reasons for this. First, laugh bouts in the train-
ing data (as in the test data) contain silent inter-call intervals [9].
A single acoustic model for laughter, as in our decoder, can there-
fore be expected to also consume silence during decoding. Second,
and perhaps more importantly, because unvoiced laughter is acous-
tically similar to various breathing sounds which appear throughout
the meeting recordings [17], we expect the laughter models to con-
sume a significant amount of audio which correctly contains breath-
ing, but is actually marked as silence in the references.

The experiments in this subsection involve two modifications to
the independent-participant baseline, both aimed at improving preci-
sion. The baseline decoder performance, in terms of F-score for dif-
ferent vocalization types, is shown as IA1 in Table 3; we also show
the performance of an identical system but with an ergodic HMM
topology as IA0. The latter makes possible qualitative comparison
with numbers published in [6].

6.1. Modeling unvoiced laughter together with silence

Systems IB0 and IB1 in Table 3 are identical in topology to sys-
tems IA0 and IA1, respectively; however, for these systems, frames
marked as unvoiced laughter in TRAINSET have been removed from
the training data for the L model and instead added to the training
data for the N model. As a result, their L hypotheses are hypothe-
ses of voiced laughter (LV ) only. As the table shows, the resulting
F-scores for LV retrieval are higher than those for L retrieval by
3.7-3.8% absolute. We also show a third system, IB2, whose min-
imum duration constraints have been tuned to DEVSET; extending
the minimum duration of voiced laughter improves LV retrieval by
9.6% absolute. This is due to much higher precision stemming from
the elimination of spurious frames, but also results in the elimination
of short laugh bouts and therefore lower recall.

6.2. Explicit modeling of unvoiced laughter

Second, Table 3 shows the performance of the corresponding sys-
tems in which unvoiced laughter LU is allowed its own model. It can
be seen that the ergodic system IC0, and systems IC1 and IC2 which
correspond in minimum duration constraints to systems IB1 and IB2,
respectively, yield lower F-scores for voiced laughter, by 0.6-2.0%
absolute. In these systems, both voiced laughter and unvoiced laugh-
ter are subject to the same minimum duration constraints. In con-
trast, for system IC3, the minimum duration constraints for the two
laughter types are untied and tuned to DEVSET, resulting in a 1.7%
absolute increase in F-score for voiced laughter over IB2.

We note that when voiced and unvoiced laughter are not sub-
ject to contrasting minimum duration constraints, as for systems IC0,
IC1, and IC2, LV detection is slightly lower than for the correspond-
ing IB0, IB1, and IB2 systems, respectively. We believe this is due
to increased model and task complexity.

6.3. Comparison with joint-participant decoding

We compare the performance of the participant-independent decoder
with that of the joint-participant decoder, in Table 4, noting that sys-
tem JA1 is the same as in [10].

As can be seen, L detection for systems JA0 and JA1 is higher
than for the participant-independent systems IA0 and IA1; the same
is true of system JB1 relative to IB1, with respect to LV detec-
tion. In general, when unvoiced laughter is not explicitly modeled,
joint-participant decoding appears to have a 0.8-2.9% absolute ad-
vantage over independent-participant decoding. However, once an

Tmin, s F, %
Sys S ∪S LV LU N

L LV

S L LV

IA0 0.1 0.1 0.1 75.4 — 87.4 30.9 —
IA1 0.2 0.4 0.3 76.3 — 87.6 32.6 —
IB0 0.1 0.1 0.1 — 78.3 86.6 — 34.6
IB1 0.2 0.4 0.3 — 79.0 86.9 — 36.4
IB2 0.1 2.5 0.4 — 81.7 86.6 — 46.0
IC0 0.1 0.1 0.1 0.1 71.6 83.5 87.3 25.9 32.9
IC1 0.2 0.4 0.4 0.3 72.6 83.9 87.6 27.6 34.4
IC2 0.1 2.5 2.5 0.4 76.3 84.7 87.2 35.4 45.4
IC3 0.1 3.2 1.4 0.4 74.6 85.2 87.5 32.4 47.7

Table 3. DEVSETF -scores of detecting vocalization (S∪L), speech
(S), and laughter (L) by VAD systems in which participants are de-
coded independently of one another; symbols as in the text.

Tmin, s F, %
Sys S ∪S LV LU N

L LV

S L LV

JA0 0.1 0.1 0.1 78.1 — 86.0 31.7 —
JA1 0.2 0.4 0.3 79.5 — 86.7 34.5 —
JB0 0.1 0.1 0.1 — 79.5 84.9 — 34.2
JB1 0.2 0.4 0.3 — 80.9 85.6 — 37.3
JC0 0.1 0.1 0.1 0.1 76.0 81.7 83.7 26.2 27.3
JC1 0.2 0.4 0.4 0.3 78.9 83.3 84.5 30.4 31.2

Table 4. DEVSETF -scores of detecting vocalization (S∪L), speech
(S), and laughter (L) by VAD systems in which participants are de-
coded jointly; symbols as in the text.

explicit LU model is introduced, the drop in LV F-score of the
JC systems relative to the JB systems is much higher than for their
participant-independent counterparts. Furthermore, and most impor-
tantly, improvements due to longer minimum duration times are not
directly possible for joint-participant decoding, due to the exponen-
tial growth of multi-participant topologies.

6.4. Generalization to unseen data

The performance of the IC3 independent-participant decoder on
EVALSET, consisting of all the Bed and Bro meetings, is shown in
Table 5, together with that of the IA1 and JA1 baselines.

System
Data

pV(L),
IA1 JA1 IC3%
L L L LV

DEVSET Bmr(3) 14.94 32.6 34.5 32.4 47.7
Bed 7.53 16.7 17.0 14.5 22.0EVALSET
Bro 5.94 19.1 19.0 16.3 37.1

Table 5. Laughter (L) and voiced laughter (LV ) detection F-scores
on several datasets using three different VAD systems. Also shown
is the proportion pV(L) of vocalization time spent in laughter.

As noted in [10], detection scores are closely correlated with the
proportion of vocalization time spent in laughter. Second, they are
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higher for Bro than for Bed, most likely due to the larger number of
Bro participants also found in TRAINSET (cf. [10]). However, for
both meetings types, system IC3 exhibits detection improvements
which are commensurate with those observed for DEVSET, ie. an
F-score for voiced laughter which is 29-95% relative higher than the
F-score for laughter reported in [10]. We also note that the difference
between the IA1 and JA1 baseline decoders is negligible for both
Bed and Bro meeting types.

7. DISCUSSION

The specific errors committed by the IC3 system are shown in Ta-
ble 6. As in the confusion matrix for the IA1 baseline in Table 2, the
amount of time which is both classified as laughter (LV ∪ LU ) and
transcribed as laughter is approximately the same (13.1-13.6 min-
utes). However, the IC3 system yields an LV precision of 45.2%,
compared to an L precision of 20.4% in the independent-participant
baseline. A reverse trend can be observed for unvoiced laughter,
where the precision for the IC3 system is only 6.7%. This shows
that the separation of voiced and unvoiced laughter leads to increased
precision in the detection of that subset of laughter which we have ar-
gued is more relevant to upstream conversation processing systems.

N LU LV S Σ
N 649.4 45.1 5.0 16.7 716.2
LU 0.8 3.6 0.7 0.4 5.4
LV 0.9 3.7 5.6 1.0 11.2
S 3.6 2.2 1.1 87.6 94.4
Σ 654.5 54.6 12.4 105.6

Table 6. Confusion matrix for the IC3 independent-participant de-
coder on DEVSET; format and symbols as in Table 2.

The confusion matrix in Table 6 also shows that the improved
IC3 system still hypothesizes much voiced laughter as unvoiced
laughter, and much silence as voiced laughter. An avenue of fu-
ture research consists of constructing topologies for voiced laughter
which explicitly model embedded unvoiced inter-call intervals.

8. CONCLUSIONS

We have presented the first attempt to detect and correctly attribute
voiced laughter in conversational interaction using a large corpus
of multi-party meetings. We described preliminary evidence which
suggests that detection of voiced laughter, as opposed to that of all
laughter, may be more useful to upstream conversation processing
tasks. Our detection results on DEVSET show that modeling only
voiced laughter leads to detection F-score improvements of 3.8% ab-
solute over modeling all laughter. Furthermore, the experiments in-
dicate that extending the allowed minimum duration of voiced laugh-
ter (to 2.5 seconds) is a more effective means than interaction mod-
eling through joint-participant decoding towards eliminating false
alarms; the observed increase in F-score is an additional 9.6% ab-
solute. Finally, explicitly modeling unvoiced laughter, and impos-
ing contrastive minimum duration constraints on the two laughter
types, yields an additional 1.7% absolute improvement. Together,
these modifications comprise a 46.3% relative increase in F-score,
or a 22.4% relative reduction of DEVSET error, on this difficult
unbalanced-prior task. Similar improvements were observed for the
much larger and unseen EVALSET data.
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