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ABSTRACT

The natural language for most deaf signers in the United States is
American Sign Language (ASL). ASL has internal structure like
spoken languages, and ASL linguists have introduced several phone-
mic models. The study of ASL phonemes is not only interesting to
linguists, but also useful for scalability in recognition by machines.
Since machine perception is different than human perception, this
paper learns the basic units for ASL directly from data. Comparing
with previous studies, our approach computes a set of data-driven
units (fenemes) discriminatively from the results of segmental fea-
ture selection. The learning iterates the following two steps: first
apply discriminative feature selection segmentally to the signs, and
then tie the most similar temporal segments to re-train. Intuitively,
the sign parts indistinguishable to machines are merged to form basic
units, which we call ASL fenemes. Experiments on publicly avail-
able ASL recognition data show that the extracted data-driven fen-
emes are meaningful, and recognition using those fenemes achieves
improved accuracy at reduced model complexity.

Index Terms— Machine Learning, American Sign Language,
Feature Selection

1. INTRODUCTION AND RELATED WORKS

The natural language for most deaf signers in the United States is
American Sign Language (ASL). ASL sentences are composed of
signs, such as UNCLE, EAT, SAD, with a quite different grammar
than English. In machine perception, American Sign Language
Recognition (ASLR) algorithms infer those signs from the sensor
readings, such as a video stream of the signer’s hand movements.
Comparing with general gesture recognition, ASLR is more struc-
tured and constrained. Since Stokoe’s pioneering work [1] in 1960
demonstrated that ASL is compositional with an internal structure
like spoken languages, various signal processing and machine learn-
ing techniques successful in speech recognition have been applied to
ASLR. Although a decomposition of the language helps to achieve
scalability in large vocabulary ASLR as in speech recognition,
ASLR research has “not yet exploited the results of determining the
appropriate basic units” [2].

ASL linguists have proposed several phonemic models since the
1960s, such as the Stokoe system [1], the Movement-Hold model [3],
and the Hand-Tier model [4]. The Stokoe system describes a sign
as one simultaneous bundle of three major formational categories:
handshape, locations, and movements. This model is inadequate
to capture sequential internal segments [5]. In order to represent
both simultaneous and sequential phonemic contrast [6] in ASL,
the Movement-Hold model describes ASL by two types of sequen-
tially ordered segments: movement segments and hold (location)
segments. Each segment is then defined by a simultaneous bundle
of descriptors, such as handshape and location. The third model

commonly used for ASL is the Hand Tier model [4], which orga-
nizes locations and movements sequentially as the Movement-Hold
model and typically makes handshape characterize the entire se-
quence. This approach is designed to remove certain duplications
in the Movement-Hold model, as well as to introduce benefits in
the morphological representation. For ASLR, we adopt the idea of
the Movement-Hold model, because its straightforward correspon-
dence to the hidden Markov models (HMMs). In fact, most research
groups [7, 8, 9, 10, 11, 12] use HMMs for sign language recognition.

While the Movement-Hold model provides a powerful linguis-
tic tool for researchers analyzing ASL, the “conceptual” descriptors
(such as handshape) used by the Movement-Hold model may not
be available to the machines. One may suggest a two-step recogni-
tion method: first recognize those conceptual descriptors from sen-
sor readings and then apply the phonological rules explicitly. How-
ever, such a method usually yields inferior performance in practice
due to variance in signing, disfluencies [13], error accumulation, and
many other factors. Alternatively, Vogler and Metaxas (VM) [9]
have shown that low-level features can directly fit phonemic models
of ASL. However, their manual transcription from the Movement-
Hold model to HMMs will be infeasible for a large vocabulary size.
In speech processing, an alternative to phonemes as basic units is
called fenemes [14, 15], which are extracted directly from the acous-
tic features (such as cepstral coefficients) by clustering. Bauer and
Kraiss (BK) [10] adopt such data-driven fenemic model based on
k-means and HMMs. In applications such as ASLR, in which the
“good” features are unknown, we believe that such generative mod-
els will be less accurate than discriminative models. We illustrate
this phenomenon with a synthetic example in Section 2. The main
differences between the aforementioned two papers and ours are
summarized in Table 1. This paper learns a set of ASL fenemes
from discriminative feature analysis. The intuition is that if two or
more sign parts (a subsequence of a sign) are indistinguishable to
machines, they can be merged to form a subword building block,
which we call ASL fenemes. These data-driven fenemes are shared
among the signs. The sharing not only reduces model complexity but
also helps avoid over-training when certain discrimination is not nec-
essary (explained in Section 2.2). To our knowledge, this is the first
attempt to extract ASL fenemes from discriminative feature analysis.
We describe our feneme extraction algorithm next.

Phoneme/Feneme Extraction Sign
Extraction Criterion Language

VM [9] Manual N/A ASL

BK [10] Data-driven Generative GSL

This paper Data-driven Discriminative ASL

Table 1. Differences in sign language phoneme/feneme extraction
between our approach and those in VM [9] and BK [10]. GSL: Ger-
man Sign Language.
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2. FROM DISCRIMINATIVE FEATURE SELECTION TO
DISCRIMINATIVE FENEME EXTRACTION

2.1. Segmentally-Boosted HMMs

The Segmentally-Boosted HMM (SBHMM) [12] is a discriminative
feature selection algorithm for sequence classification problems [16]
in which “good” features are unknown, such as ASLR and lip read-
ing. SBHMMs first conduct standard HMM training on time se-
quences (signings). Inspired by the Segmental K-means Segmenta-
tion (SKS) [17], the time sequences are then segmented into states
using the Viterbi algorithm. According to the Markovian assumption
and the conditional independence assumption by HMMs, the sam-
ples of the same states are independent and identically distributed
(i.i.d.). Therefore, feature selection algorithms, which usually re-
quire the data to be i.i.d., can be applied to those segments to com-
pute state-dependent discriminative features. In SBHMMs, discrim-
inative features that separate those states are extracted by multiclass
boosting algorithm [18]. The outputs of the multiclass boosting en-
sembles span a discriminative feature space, in which traditional
HMMs are then re-trained. SBHMMs have an advantage over pre-
vious discriminative feature analysis algorithms in two major as-
pects: (1) the features are evaluated segmentally (comparing with
the “global” feature selection techniques [19, 20]); and (2) the new
feature space is formed by a nonlinear projection computed by large
margin classifiers (comparing with Tandem models [21]). Experi-
ments in Yin et al. [12] have shown that SBHMMs reduce the test
error of traditional HMMs by 17% to 70% in continuous ASLR,
gait recognition, lip reading, and simple speech recognition tasks.
SBHMMs also compare favorably to other discriminative learning
techniques such as Conditional Maximum Likelihood (CML) [12].

2.2. Learning From Unsuccessful Separations

The multiclass boosting in SBHMMs searches for features that sep-
arate the samples of one state from those of any other states in the
same sign and in the other signs. As indicated by the Movement-
Hold model, many segments (states) are shared between different
signs. For example, the sign WIFE 1 is composed of FEMALE, a
transition move, and MARRIAGE; while HUSBAND is composed
of MALE, a transition move, and MARRIAGE. If WIFE and HUS-
BAND are represented by three-state HMMs, their last states will be
identical (in a noise-free situation). In such a case, multiclass boost-
ing will not be able to find features that separate these two states.
This “failure” in state separation does not necessarily affect the se-
quence recognition accuracy for SBHMMs, however 2. In fact, we
can use this failure as evidence that the two states should be tied. In
this paper, we propose to take advantage of such tying to actively
extract building blocks (fenemes) of signs.

Phonemes are the smallest contrastive units in a language, which
can be illustrated in minimal pairs [22]. A minimal pair in ASL is
defined as two signs bearing different meanings but are identical ex-
cept for one formational aspect, such as location. In order to extract
basic units for ASL, a learning model must be “sensitive” enough to
represent the contrast in minimal pairs. In the synthetic example in
Fig. 1, two types of three-dimensional time sequences moving from

1In this paper, we use capitalized words to refer to ASL signing. Due to
space limitations, we are unable to provide visual illustrations of all the signs
mentioned in this paper. The video of most signs are available from online
ASL dictionaries.

2For the samples from the identical states, their feature values are still
similar in the new feature space. Therefore, those samples little side effect
on the sequence recognition results.

left to right are marked by orange and green. Assuming each dimen-
sion is a feature, both HMMs and SBHMMs with six states achieve
100% accuracy in the “easy”(clean) case of Fig. 1(a). However,
when different states have different informative dimensions/features
as in Fig. 1(b), HMMs, being generative, achieve a testing error of
10.1%. Meanwhile, SBHMMs, being segmentally discriminative,
achieve an error rate of 2.3%. Fig. 1(c) shows the feature impor-
tance for each state are correctly estimated by SBHMMs.

(a) (b) (c)

Fig. 1. A synthetic example of segmental discriminative features.
(a) “clean,” (b) “twisted,” and (c) SBHMMs assign highest weight to
feature 3 in the first three states and feature 1 in the last three states
for one HMM. This corresponds to the switch of the informative fea-
tures. The feature weight for the other HMM is similarly assigned.

Next, we examine the behavior of SBHMMs with ASL minimal
pairs in a publicly available ASLR dataset [23] 3. This dataset con-
tains 665 phrases with 141 distinct signs (classes). The inputs are
readings of 17 accelerometers mounted on hand, wrist, and shoulder
in Table 2. We found that SBHMMs corrected three instances of mis-
classification made by HMMs with the minimum pair BROTHER
and SISTER (as signed in the dataset). The sign BROTHER and
the sign SISTER are illustrated in Fig. 2. The only difference in the
two signs is the starting posture of the hand, which should relate to
the accelerometer for the the wrist orientation (number 15) 4. In-
deed, the feature weight computed by the SBHMMs in Fig. 3(a) and
(c) shows that the readings of the accelerometer for the wrist orien-
tation are considered moderately important (the red dots at column
15) when we use all the 141 different signs for training.

To show that SBHMMs are sensitive to the impact of the min-
imum pairs, we have conducted training using only the samples of
BROTHER and SISTER, and then using all the words including SIS-
TER but excluding BROTHER. The feature weight are plotted in
Fig. 3(b), (d), and (e). We can see that when using only the min-
imum pair of BROTHER and SISTER to train, the weights of the
wrist orientation at the first state (the red dots at column 15) are sig-
nificantly higher in Fig. 3(b) and (d) than those in Fig. 3(a) and (c).
This difference illustrates that segmental feature selection is sensi-
tive to such phonemic contrast. In addition, when training with the
140 types of signs without BROTHER, the weight of the wrist ori-
entation at the first state (the red dot at column 15) for SISTER is
reduced in Fig. 3(e) comparing with Fig. 3(a) and (c), because of the
relaxed competition in classification. Note that the wrist orientation
may help discriminate SISTER from other signs, so its weight does
not necessarily vanish when BROTHER is absent. Another experi-
ment with the minimal pair IGNORANT and MISUNDERSTAND-
ING also proves that SBHMMs are able to disclose the phonemic
contrast of the minimal pairs.

3http://wiki.cc.gatech.edu/ccg/projects/asl/asl
4The location of the hand is actually a better feature to discriminate the

two signs. However, such information is not available to accelerometers.
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feature index meaning

1 and 2 thumb outside

3 and 4 thumb top (on thumbnail)

5 and 6 index finger

7 and 8 middle finger

9 and 10 ring finger

11 and 12 pinkness

13 wrist perpendicular to bones

14 wrist parallel to fingers

15 wrist perpendicular to palm

16 shoulder elevation (forward)

17 shoulder (outward)

Table 2. The meaning of the 17 accelerometer readings

(a) (b)

(c) (d)

Fig. 2. Illustration of the formation of the minimal pair BROTHER
and SISTER. (a)(b) BROTHER and (c)(d) SISTER.

2.3. The State Tying Paradigm

When two segments are indistinguishable to discriminative classi-
fiers, they probably come from the same feneme. Based on this in-
tuition, we apply state tying [15], which is successful in improving
efficiency and scalability in speech recognition, to the inseparable
states detected by SBHMMs. The state tying procedure can be ex-
ecuted in two ways: top-down or bottom-up. One major problem
of the top-down approach is how to revise the state transition ma-
trix to include the new states. The second way for state tying is the
bottom-up approach. It starts with a fine-scale representation and se-
quentially clusters the states that are similar. Bottom-up state tying
has been widely used in practical speech recognition systems due to
its simplicity [15]. We adopt the bottom-up approach in this paper.

Algorithm 1 The DIST algorithm

1: randomly initialize the HMMs
2: run SBHMMs to select state-dependent discriminative features.
3: while NOT (a pre-set lower bound P number of fenemes are extracted

OR no state pair exceeds θ OR a pre-set number of rounds I is reached )
do

4: extract the confusion matrix in separating the states.
5: use the Houtgast algorithm to compute the similarity of each state

pairs from the confusion matrix.
6: merge the top m most similar state pairs, or the state pairs whose

similarity is above a threshold θ.
7: run SBHMMs to select state-dependent discriminative features in the

new state space.
8: end while
9: train and test in the new feature space computed by SBHMMs.

(a) (c)

(b) (d)

(e)

Fig. 3. The impact of minimum pairs on feature weighting obtained
by SBHMMs. (a) and (b): the feature weighting for the signs SIS-
TER and BROTHER, trained with all the 141 classes; (c) and (d):
the feature weighting for the signs SISTER and BROTHER, trained
with only those two signs; (e): the feature weighting for the sign
SISTER, trained with all the classes except BROTHER.

2.4. DIscriminative State-space Tying (DIST)

In order to perform state tying, we need to compute the state simi-
larities from the confusion matrix produced by SBHMMs. One con-
ventional method for this conversion is the Houtgast algorithm [24]
sij =

∑n
k min(cik, cjk), in which sij is the similarity score, and

cij is the (i, j)th element in a n × n confusion matrix C. The
flowchart of the DIscriminative State-space Tying (DIST) is in Al-
gorithm 1.

3. EXPERIMENTAL VALIDATION

We have tested our DIST-SBHMMs algorithm on the accelerometer-
based ASLR dataset [23]. Following the convention in Yin, et
al. [12], we use one three-state HMMs to model each sign. We ran-
domly split the ASL phrases, using 90% for training and the other
10% for testing. The resulting confusion matrix determines the state
to be tied. The new reduced models (fewer states) are then re-trained.
For simplification, DIST-SBHMMs only iterate once (I = 1) in our
prototype, and only the top m = 10 most confusable state pairs are
tied 5. After state tying, the recognition error is reduced by 9% (from

5The value of m was arbitrarily set in this paper. We actually have manu-
ally examined the top 15 state pairs. Those state pairs are all correct accord-
ing to ASL linguists.
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Rank Sign Name State Number Sign Name State Number Reason

01 DAUGHTER 3 SON 3 BABY

02 WIFE 3 HUSBAND 3 MARRIAGE

03 MORNING 1 THING 1 stretching arm

04 APOLOGIZE 1 APOLOGIZE 2 a repetitive pattern

05 WATER 1 WINE 1 W

06 ROOSTER 1 ROOSTER 2 a repetitive pattern

07 TOILET 1 TOILET 2 a repetitive pattern

08 SICK 1 SMART 2 folding middle finger

09 SUSPECT 2 PUZZLE 2 forehead touch

10 USE 1 USE 2 a repetitive pattern

Table 3. The top 10 similar states computed by DIST-SBHMMs in one of our tests

4.10% to 3.73%), which we believe is due to less overfitting.
In order to test the consistency of our feneme extraction algo-

rithm, we have run the experiments four times, and the top 10 most
confusable pairs have 60% overlap (24 out of 40). On the one hand,
the 60% overlap illustrates that the perceptually meaningful fenemes
are not obtained by chance. It proves that consistent fenemic repre-
sentation for machine perception can be infered from data. On the
other hand, the 40% difference suggests that more interesting pat-
terns (fenemes) may be extracted with higher diversity in data. The
top 10 most similar state pairs in one of our four runs are reported in
Table 3. The discovered similarities and the extracted fenemes are
considered perceptually meaningful by our sign linguist.

4. CONCLUSION AND FUTURE WORK

In this paper, we have presented preliminary results for DIST-
SBHMMs, which extract data-driven ASL fenemes from segmental
discriminative feature selection. Experimental results suggest that
DIST decompose ASL into perceptual meaningful pieces (fenemes)
that can be used to reduce model complexity without sacrificing
model accuracy. However, DIST-HMMs may produce unnecessary
tying due to lack of “good” features to distinguish certain signing
segments. Our discriminative model is also sensitive to “bad sign-
ing.” In the future, we plan to execute more tests of DIST-SBHMMs
to observe how ASL fenemes are extracted iteratively and whether
such data driven method can discover fenemes that are unknown to
ASL linguistics. We also plan to extend this discriminative temporal
structure learning technique to less-constrained gesture recognition
applications.
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