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ABSTRACT

This paper focuses on a lesser studied multiparty meetings process-
ing task of argument diagramming. Argument diagramming aims
at tagging the utterances and their relationships to represent the flow
and structure of reasoning in conversations, especially in discussions
and arguments. In this work, we tackle the problem of automati-
cally assigning node types to user utterances using several lexical
and prosodic features. We performed experiments using the AMI
Meeting Corpus annotated according to the the Twente Argumenta-
tion Schema. Our results indicate that while lexical and prosodic fea-
tures both provide orthogonal information for this task, using a cas-
caded approach, eliminating backchannel utterances improves the
performance. With this final approach, when all features are used,
we achieve about 9% relatively better error rates than a simpler clas-
sifier based on only lexical features.

Index Terms— argument mapping, classification, lexical and
prosodic features, multiparty meeting processing.

1. INTRODUCTION

Meetings form an essential part of information exchange and com-
munication in organizations. In the recent years, the availability of
multiparty meeting corpora with annotations, such as the ICSI [1]
and AMI [2] meeting corpora, allowed speech and language process-
ing research in several areas including automatic transcription [3],
dialog act segmentation [4] and tagging [5], and summarization [6]
of meeting content.

In this paper, we focus on a lesser studied meetings processing
task of argument diagramming. Argument diagramming aims to dis-
play a visual representation of the flow and structure of reasoning
in conversations, especially in discussions and arguments [7]. To
this end, the utterances and their relationships are tagged with pre-
defined classes representing the characteristics of the discussion and
argumentation. For example, one utterance may open a new issue
and another utterance replying to that one may elaborate on that.
In the argument diagrams, typically, utterances are represented via
typed nodes, and the relationship of utterances with other related ut-
terances are shown via typed edges connecting two nodes, forming
a tree structure for the topics discussed.

Argument diagrams extracted from meetings can be useful for
meeting participants, to help them in following discussions and catch
up with arguments, if the maps can be extracted during the meet-
ing [8]. There is a wide body of work that focuses on visualization
of argument maps, as entered by the conversation participants [8, 9].
Argument diagrams can also help users in browsing past meetings,
tracking progress across several meetings and can be useful in meet-
ing summarization. [10] have performed experiments with human
subjects, and their results indicated that argumentation information

from meetings can be useful in question answering. Argument dia-
grams can also help the related tasks of action item extraction [11,
12] and decision detection [13] in meetings. Note that argument di-
agramming is different than decision detection in several ways, the
most important one is that not all discussions are required to include
a decision.

For the multiparty meetings domain, two studies proposed ar-
gumentative models of meeting discussion. Combining their expe-
rience from two meeting processing projects, DARPA CALO and
Swiss National Research project IM2, Pallotta et al. discussed four
perspectives (persuasion, decision making, episodes, and conversa-
tions), and a theoretical model for each perspective [14]. Similarly,
Rienks et al. proposed the Twente Argumentation Schema (TAS),
and annotated the AMI meeting corpus according to TAS [7]. In
this paper, we use the TAS and the corresponding argument diagram
annotations on the AMI meeting corpus [2]. In this representation,
there are six node types, and nine relation types, which are described
in more detail in the next section. The relations apply to specific
node type pairs. In this work, we only tackle the problem of assign-
ing node types to user utterances, and study the use of several lexical
and prosodic features for this task. Previously, Galley et al. used
lexical, durational and structural features with Bayesian networks,
to detect agreement and disagreements in conversations [15]. Mur-
ray et al. investigated the use of prosodic features to detect rhetor-
ical relations, that aim to describe conversations in terms of coher-
ence [16]. Rienks and Verbree used decision trees with features ex-
tracted from manual annotations, such as the presence of a question
mark, utterance length, label of the preceding segment, and automat-
ically computed features such as part of speech tags to investigate the
learnability of argument diagram node types[10].

Section 2 describes TAS, along with examples from meetings
from the AMI corpus. Section 3 describes our approach that is based
on lexical and prosodic features. Section 4 presents results of pre-
liminary experiments for node type detection, as well as an analysis
of feature usage.

2. THE TWENTE ARGUMENT SCHEMA (TAS)

TAS was created at University of Twente, where argument diagrams
for parts of meeting transcripts that contain discussions around a spe-
cific topic, were also formed [17]. In TAS, argument diagrams are
tree-structured; the nodes of the tree contain speech act units (usu-
ally parts of or complete speaker turns) and the edges show the re-
lations between the nodes, the edges emanate from parents and end
at children nodes, where the children nodes follow parent nodes in
time. At a high level, there are two types of nodes: issues and state-
ments. The issue nodes mainly open up an issue and request a re-
sponse and are further categorized into three depending on the form
of the response they expect: open issue (OIS), A/B issue (AIS) and
Yes/No issue (YIS). The open issues are utterances that allow for
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TYPE EXAMPLE
STA And you keep losing them.
WST We should probably just use conventional batteries.
OIS What’s the functionality of that?
AIS So, double or triple?
YIS Do we need an LCD display?
OTHER Mm-hmm.

Table 1. Examples of utterances that belong to statement (STA),
weak statement (WST), open issue (OIS), A/B issue (AIS), Yes/No
issue (YIS), and OTHER node types.

various possible responses, that are not included in the utterances
themselves. In contrast, A/B issues are utterances that request possi-
ble responses that are specified in the utterance. The Yes/No issues
directly request the other participants’ opinion as a “Yes” or “No”.
The statements are utterances that convey the position of the speaker
on a subject/topic. To be able to represent the statements for which
the speaker is not highly certain about what they say, the statements
are split into two: statements (STA) and weak statements (WST).
The weak statements represent the cases where the speaker is not
very confident. The rest of the utterances that are not involved in
reasoning or backchannelling utterances are represented with an ad-
ditional (OTHER) category. Table 1 shows example utterances for
each node type.

The relations between a pair of utterances are categorized into
nine types: Elaboration, Specialization, Request, Positive, Negative,
Uncertain, Option, Option Exclusion, and Subject To. As its name
implies, Elaboration relation applies to the pair of utterances (both
which can be statements or issues), where the child node utterance
elaborates on the parent node utterance. Similarly, the Specialization
relation applies to pairs (statements and statements or issues and is-
sues), where the child node is a specialization of the parent node.
The Request relation relates two utterances (statements to issues),
where the child utterance asks for more information about the par-
ent. The Positive and Negative relations apply to utterances, where
the child utterance supports or refutes the parent utterance, respec-
tively. The Uncertain relation applies to pairs, where it is not clear
if the child supports or refutes the parent node. The Option relation
relates pairs of utterances (statements to issues or other statements),
where the where the child is a possible answer, option or solution to
the parent utterance. The Option Exclusion relates pairs (statements
or issues to issues), where the child node eliminates one or more
of the possible answers, options or solutions to the parent utterance.
The Subject To relation applies to pairs (statements and Yes/No or
A/B issues or statements), where the child provides criteria that need
to be fulfilled before the parent node can be supported or denied.

More information about the relation types and example utter-
ance pairs and annotated tree structures can be found in [7] and in
the annotation guidelines [17]. One important thing to note about
relations is, they usually relate pairs of utterances of specific node
types. Therefore, the detection of node types before determining the
relations is intuitively the processing sequence that we follow in this
work for extracting argument diagrams from conversations, while
joint modeling techniques should also be investigated in the future.

3. AUTOMATIC DETECTION OF NODE TYPES

We consider the automatic annotation of node types as a multi-class
utterance classification problem. More formally, given an utterance

xi ∈ X , the problem is to associate a class ci ∈ C with xi where
C is the finite set of argument diagram node types (C = STA, WST,
OIS, AIS, YIS, OTHER). Given a collection ofm labeled examples
S = {(x1, c1), ..., (xm, cm)}, the learning task is achieved by using
a Bayesian classifier:

ĉ = arg max
c∈C

p(y = c|x)

In this study, similar to most other tasks such as dialog act
tagging or decision detection, with the recent advances in machine
learning, we rely on a discriminative state of the art classification
approach, namely Boosting. Boosting is an iterative learning algo-
rithm that aims to combine weak base classifiers to come up with a
strong classifier. At each iteration, a weak classifier is learned so as
to minimize the training error, and a different distribution or weight-
ing over the training examples is used to give more emphasis to
examples that are often misclassified by preceding weak classifiers.
For many text and speech categorization tasks Boosting is shown
to results in performance very close to the state-of-the-art, while
providing models that are easily interpretable by humans.

As the features for classification we rely on lexical and prosodic
information. The lexical information is nothing but the word n-
grams (n = 1, 2, 3) as extracted from candidate utterances. The
prosodic features are expected to be useful to distinguish backchan-
nels (subset of OTHER) from the rest and issues (OIS, AIS, and
YIS), which are mainly questions, from statements (STA and WST).
Inspired by the previous work on question detection [18], we com-
pute several local and contextual prosodic features. The local fea-
tures include mean, median, minimum, maximum pitch and energy
features over the complete utterance, as well as their speaker normal-
ized versions and range features. The contextual features compare
the complete utterances, as well as the final 200ms window of the
utterances to the following and preceding utterances.

While the nature of the task suggests that a sequence classifica-
tion method may be more appropriate, as the data set we use in our
experiments does not include annotations for all user utterances, we
choose to use a local classifier without considering preceding and/or
following utterances, except when computing features.

Extending this basic classification schema, we also propose the
use of a cascaded approach, in which first a classifier is employed to
distinguish the OTHER category (which are mostly backchannels)
from the rest of the utterances. Then a second classifier is used only
to determine the type of the issue or the statement. This has at least
two big advantages. The first use is in discriminating backchannels
from agreement statements. Note that most agreement sentences are
single word utterances, such as yeah or okay and they are also used
as backchannels. Furthermore their usage in a backchannelling ut-
terance is typically more frequent than their usage for agreement.
Unless contextual information is considered, there is no way to un-
derstand that a particular word is uttered for agreement or backchan-
nelling. In the earlier work [12], the prosodic features were also
shown to be useful in distinguishing backchannels from issues and
statements. The second use is in making the task of secondary clas-
sifier easier by providing training data with no ambiguously labeled
utterances.

4. EXPERIMENTS AND RESULTS

4.1. Data Sets and Evaluation

In our experiments on detecting argument diagram node types, we
used the AMI Meeting Corpus [2], a multi-modal meeting data col-
lection from meetings of 4 participants, that are about 30 minutes on
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Category Rel. Frequency Avg.Utt. Length
STA 58.9% 16.0
WST 2.8% 16.9
OIS 3.4% 18.3
AIS 1.0% 23.8
YIS 6.4% 16.3
OTHER 27.5% 6.2

Table 2. The relative frequency and average utterance length in
terms of number of words for statement (STA), weak statement
(WST), open issue (OIS), A/B issue (AIS), Yes/No issue (YIS), and
OTHER node types.

average. The meetings are scenario-driven, where participants have
been assigned roles in a loosely scripted collaborative design task.
All meetings are hand-transcribed and annotated fully or partially
for several categories, such as dialog acts, topic segments. We used
a 95-meeting subset which is also annotated for arguments between
participants [7]. In this data set, not all utterances are annotated,
therefore we only use the annotated utterances for training and test-
ing. In total, there are 6,920 utterances annotated with a node cate-
gory of one of the 6 node types. The relative frequency and average
utterance length for each category are summarized in Table 2.

We performed n-fold cross validation experiments (n = 95),
where a single meeting is used as the test set, and 10 meetings are
used as the held-out data set to optimize parameters in each iteration.
To compare results from different experiments, we use test set error
rate (TER). In all the experiments, we used the BoosTexter classi-
fier [19], an implementation of the boosting family of classifiers. All
features, except word sequences and utterance begin and end times,
are automatically computed. For computing word n-grams, we use
manual transcriptions of user turns, to investigate the use of words
for this task. Note that, unlike the previous work investigating the
computability of TAS node labels [10], we excluded the punctuation
marks, such as question marks that can signal questions, from the
transcriptions.

4.2. Results

In order to form a simple baseline, we assigned all utterances the
type of the majority class, that is a statement. This resulted in an
error rate of 41.1%. The average utterance lengths for each node
type seemed to be a good way of distinguishing backchannels that
form the majority of the OTHER class from the rest of the utter-
ances. Therefore, the first experiment we performed used only ut-
terance length as classification feature. However this resulted in an
error rate even higher than the simple baseline. Although the state-
ments have a large average utterance length, their variance is also
high. A quarter of all statements are single word utterances, such
as confirmations in response to questions. Similarly, while most of
the OTHER utterances are short backchannelling utterances, these
also include non-backchannelling utterances that are not related to
discussions. For example, 22% of the utterances of OTHER type are
longer than 6 words, and 9% of them are longer than 15 words.

In order to form another baseline, we used only the word n-
grams (n = 1, 2, 3) extracted from every utterance as classification
features. This resulted in an error rate of 29.2%, which is signif-
icantly better than the simple majority class baseline. This shows
that word sequences by themselves are useful for detection of node
types. The selected word n-grams by BoosTexter included word se-

Experiment Error rate
Majority 41.1%
Utterance Length 41.5%
Word n-grams 29.2%
All features 27.2%

Table 3. Results of node type detection experiments using single-
pass classification.

Experiment Error rate
Majority 27.6%
Word n-grams 17.6%
All features 15.1%

Table 4. Results of experiments that detect OTHER type utterances.

quences such as “Mm-hmm” that signal backchannels, “maybe”, and
“possibly” that signal weak statements. We also used all features in
a kitchen sink model, and obtained the best single classifier perfor-
mance of 27.2%, which is about 7% better relatively than the word
n-grams only model. Table 3 summarizes the results from these ex-
periments.

When examining the confusion matrices from these experi-
ments, we confirmed that the prosodic features seem to help the
detection of backchannelling utterances that form the majority of
the OTHER category. To further analyze this, we also performed
cascaded experiments, where in the first stage of the cascade, we
tried to detect of an utterance belongs to the OTHER category or
not, and in the second stage, classified only utterances that do not
belong to the OTHER class into the remaining 5 categories. The
results of the first stage of the cascaded experiments are shown in
Table 4. The assignment of the majority class (non-OTHER) to all
utterances results in an error rate of 27.6%, which drops to 17.6%
when word n-grams are used, and 15.1% when all features are used.
In the boosting model files, the most widely used prosodic features
for detecting OTHER class utterances are speaker normalized mean
and median energy, as well as pitch and energy ranges.

The results of the cascaded approach are shown in Table 5. If
only the lexical features are used in this approach, the error rate is
28.8%, which is only slightly better than the single step approach
using lexical features. The cascaded approach using all features re-
sults in an error rate of 26.6%, which is the best result on the overall,
and is 9% relatively better than a single step classifier using only
lexical features. If all features are used in the first step, and only
lexical features are used in the second step, the classification perfor-
mance is very similar, suggesting that the prosodic features are not
as useful in the second step as expected. This may be due to the
fact that the nodes frequently include more than one dialog act unit,
and the question is not always the final dialog act unit of the issue
nodes. The investigation of prosodic features computed at the dialog
act unit level can help this problem, and remains as an issue to be
further investigated.

Experiment Error rate
Word n-grams 28.8%
All features 26.6%

Table 5. Results of cascaded node type detection experiments.
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A difficulty related to this task is that not all utterances involved
in meeting discussions are annotated, this made the application of
sequence classification methods not practical.

5. CONCLUSIONS

We have presented a first study towards automatic argument dia-
gramming of multiparty meetings. While this is a new task, it is an
important enabling task for many higher level meeting understand-
ing tasks, such as decision detection or summarization.

We have employed a cascaded approach relying on two classi-
fiers using lexical and prosodic features for tagging the argumenta-
tion types of the utterances. We see that prosodic information is very
helpful in distinguishing the backchannels and questions raising is-
sues.

Our future work involves automatic tagging of relationships be-
tween the utterances. This is a complementary task mutually depen-
dent on the task of utterance argumentation type classification which
is studied in this paper. We also plan to perform experiments using
the automatic speech recognizer output instead of manual transcrip-
tions.
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