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ABSTRACT

The goal of this research is to infer traits about groups of people
from their turn-taking behavior in natural conversation. These traits
are latent attributes in a social network, whose relative frequencies
we estimate from content-derived metadata. Our approach is to train
statistical models of turn-taking behavior using automatic labels of
speech activity, and measure the association of these models with
socially correlated traits. We experimentally evaluate these ideas us-
ing the Switchboard-1 speech corpus, which provides speech content
and metadata associated with each speaker, such as gender, age and
education, as well as inferred social correlates such as willingness
to participate and initiate. We show that population proportions of
these socially correlated externals can be predicted with a root mean-
squared error of approximately 0.1 across all mixture proportions.

Index Terms— turn-taking, social network analysis, speech de-
tection

1. INTRODUCTION

The goal of this research is to infer traits about groups of people from
their spoken conversations. There are many practical and theoretical
motivations for this problem. Potential applications include detect-
ing dissatisfied customers and predicting influence between speakers
for social network analysis. Theoretical interest centers on placing
such information within a broader context. Social network analysis
captures structural information about human interactions [1]. A set
of conversations amongst individuals can be organized into an at-
tributed communication graph with speakers as vertices and dialogs
as edges. The content of individual messages can be analyzed using
automatic language processing. However, exploiting dependencies
among content and other attributes of the communication graph is a
relatively new research area. Context can improve language models
as in [2]; here we consider the converse, using content models to
improve estimation of unknown externals. A similar approach was
taken by [3], although their corpora and content models differ from
those used in this paper.

Many socially correlated traits are not directly observable from
the words that are spoken, but are revealed from speaker interactions.
These traits include attributes of a speaker, such as age, education,
gender, and where they were raised. We refer to these as external
metadata, ΞE . Other traits are attributes of how a speaker interacts
with others, such as the frequency of communications. We denote
such metadata, derived from a communication graph, as ΞG. Meta-
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data can also be derived from the content of a communication, which
we refer to as meta-content and denote ΞC .

Conversation consists of related streams of information. Multi-
media analysis of group meetings has led to the notion of dialog as
a group activity, with individual actions impacting a collective state
[4]. In this work, we train models of the stochastic process of turn
taking from observed speech activity states in two-person dialogs.
This ignores linguistic content, but even structural dialog acts can
aid speech recognition [5]. Activity can be modeled over small or
large portions of dialog [6]; we consider actions corresponding to
such notions as sentence fragment or speaker turn.

How a conversation proceeds can be more important than what
is said [7]. We wish to relate turn-taking behavior to socially cor-
related externals. Existing research suggests that social role, age,
gender, education, and background culture all impact turn-taking
behavior [3] [8]. (So may dialog type [9], topic [10], or familiar-
ity among speakers [11].) Relatively simple audio features can be
used to model turn-taking behavior. Systematic differences emerge
in models trained from different sets of speakers or dialogs.

The Switchboard-1 corpus includes demographic information
about the participants in addition to the dialogs. While the speakers
and dialogs in Switchboard do not comprise a natural social network,
speakers’ levels of participation and initiation vary. Thus metadata
ΞE , ΞG, and ΞC are all present, and social correlates of turn-taking
behavior can be estimated and exploited.

We will show how to train turn-taking models from Switch-
board, using dialog states inferred from speech activity detection
(SAD). This allows clustering of speakers based on similarity of their
turn-taking behavior. We observe statistical dependence of cluster
membership with other speaker traits on the training data, i.e. vari-
ous traits are correlated with a speaker’s derived turn-taking “style.”
Experimentally we sample test data using different proportions of
turn-taking style. Over the test data, we estimate proportions of the
correlates of turn-taking style from observed turn-taking behavior.

The rest of the paper is organized as follows. A brief summary
of the Switchboard-1 communication graph is provided in Section 2.
A model of speaker turn-taking behavior is presented in Section 3.
Section 4 describes the experimental results and data analysis, and
Section 5 presents concluding remarks.

2. SWITCHBOARD-1 COMMUNICATION GRAPH

The Switchboard-1 corpus [12] has been used to evaluate many prob-
lems in language processing. In this work, Switchboard provides a
convenient test-bed for a proof-of-concept experiment. It has ex-
tensive, publicly available annotations, including manual word-level
transcriptions of all dialogs, with time alignments for both sides.
Content consists of 2438 dialogs, recorded in two-channel audio
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files. Each dialog is a variable-duration topical conversation between
exactly two of the 520 participants.

The set of spoken dialogs between speakers can be considered as
a communication graph. A communication (dialog) is an attributed
edge connecting the speakers. Dialog attributes include date, time
and topic. This work focuses on speaker attributes. Speaker at-
tributes such as willingness to participate correspond to the degree of
a vertex (speaker) in the graph, as does willingness to initiate a dialog
(the out-degree of a vertex). Some speakers always initiate dialogs,
others never do so. Such graph-derived metadata is extracted from
the structure in Figure 1.

Fig. 1. Switchboard-1 communication graph.

A few demographic fields were recorded for the participants.
These included accent, age, education level, and gender. Additional
attributes can be derived from content; in particular the parameters
of a model D(t) of a particular speaker’s turn-taking behavior can be
trained on dialog activity from all adjacent edges. Clustering speak-
ers with similar turn-taking behavior allows the categorical attribute
of cluster membership to serve as shorthand for speaker turn-taking
styles.

Fig. 2. SWB-1 speaker participation.

Due to the data collection protocol [13], two participants, typi-
cally strangers, have at most one mutual conversation. Vertex degree
depended on voluntary participation in dialogs, shown in Figure 2,

with an average participation of roughly 9 dialogs per speaker. The
data collection methodology was asymmetric in that dialogs were
initiated by a speaker — Speaker 1 called the robot operator, which
found some other study member willing to participate at that mo-
ment. Thus in-degrees differ systematically from out-degrees. “Par-
ticipation” and “initiation” levels are speaker attributes derived from
the communication graph.

The Switchboard dialogs reside in the attributed graph G as
sketched in Figure 1. The corpus permits study of dependencies
among ΞC , ΞE , and ΞG, in particular between turn-taking behavior
and other socially correlated speaker traits.

It remains to provide details of training the turn-taking model
from Switchboard. For SAD, we use the energy-based xtalk tool
from MIT Lincoln Laboratory [14]. This produces a stream of 10
ms frame labels of speech activity detection for each dialog side,
which we smooth via a 10-frame window. One-sided segmentation
proceeds as follows: inactive regions of at least 2 seconds length
are marked as I, others as A, and adjacent states of the same type
combined to create a one-sided alternating activity sequence, e.g.
IAI. . .AI. We combine both sides to create a dialog activity state
sequence S(t) as in Figure 3. The S(t) are used to train models of
dialog turn-taking D(t).

Fig. 3. Dialog state from multiple sides.

Since Switchboard-1 has been thoroughly transcribed, we can
verify our results using the manual transcriptions without the errors
inherent in automatic labeling. Switchboard audio clips frequently
include distinct crosstalk from the other speaker, which is quite prop-
erly detected by a sensitive SAD system. This raises a challenge in
detecting which speaker is active at which time (see for example [15]
for a detailed treatment). Our SAD results depart from ground-truth
dialog states with a frame error of approximately 16%.

3. MODELS OF SPEAKER TURN-TAKING BEHAVIOR

The actions of one participant in a conversation is a sequence in time,
with regions of both speech and silence. Denoting activity by “A”
and inactivity by “I”, a single speaker produces a sequence of these
two states. For a two-sided dialog, this suggests two aligned se-
quences with speech on the part of one speaker slotting neatly into
a listening silence from the other side. The reality is more com-
plex; silent regions arise when speakers pause to offer the floor or
to breath, while interjections or miscues result in audio from both
speakers simultaneously. Audio records of a two-sided dialog can
be partitioned into four states: AA, AI, IA, and II, as shown in Fig-
ure 3.

Consider a semi-Markov process, with history of length k ≥ 0
leading to state transition probabilities P (Xt|Xt−k, . . . , Xt−1) and
state durations f(Xt|Xt−k, . . . , Xt). We prohibit self-transitions.
State durations are modeled via Gamma distributions, which allow
a qualitatively reasonable fit to the empirical distributions, and seem
theoretically plausible as sums of independent exponential durations.

4746



Given a dialog state sequence S(t), state counts and durations (con-
ditioned on history) allow estimation of transition probabilities and
duration distribution parameters. We use maximum-likelihood esti-
mates of model parameters.

Shifting consideration from dialogs to speakers raises a few is-
sues. While dialogs may divide into “Side 1” versus “Side 2”, speak-
ers do not. A participant in a two-sided dialog perceives four activity
states, but the natural interpretation differs: AA (both speakers ac-
tive), AI (self active), IA (other active), and II (neither active). While
this combines all “other” people into one class, modeling relation-
ships between individuals is beyond the scope of this work. Note
that this creates two “perspectives” for a two-sided dialog, with AI
and IA exchanged depending on “self.”

Fig. 4. Unigram turn-taking model, trained from all xtalk turn-level

speaker activity sequences.

We concatenate the S(t) of all dialogs including speaker V
(from his or her perspective) to generate speaker perspective se-
quences SP

V (t). Combining all SP
V (t) provides the data for a gen-

eral content model as shown in Figure 4. While state probabilities
are natural model parameters, relative time spent in a state seems
more useful for understanding (and is equivalent given average state
durations). AI and IA are equivalent in global models since both
perspectives of every dialog are used to train: every state IA ap-
pears elsewhere as an AI. Note this is not the case for subsets of
the corpus; in a content model trained from SP

V (t) the speaker-
perspective sequence for speaker V , states AI (V speaking) and IA
(other speaking to V ) can have very different properties.

It is straightforward to estimate ML turn-taking model parame-
ters from a dialog activity sequence. We apply a standard divisive
clustering algorithm [16]:

• For each speaker V , create speaker-perspective training se-
quence SP

V (t).

• Train model of overall DG(t) from ∪SP
V (t).

• Randomly partition speakers into sets C0 and C1.

• Iterate until convergence:

– Train cluster models Di(t) from sequences SP
j (t), j ∈

Ci.

– Reassign each speaker j into the Ci for which SP
j (t)

has minimum cost (here negative log-likelihood) under
the model of Di(t)

We henceforth denote members of Ci as having turn-taking style i.
The model parameters resulting from a particular initial partition

are shown in Table 1. Here |C0| = 306 and |C1| = 214. Style 0
is characterized by fewer and shorter states AA, more and longer II,
slightly longer AI, and longer IA than style 1. A typical Switchboard
dialog provides enough evidence to discriminate between styles; 5-
minute sequences generated according to models D0(t) and D1(t)
can be classified with approximately 0.2% EER. Turn-taking style
shows significant dependence with other traits, as shown in Table 2.

State Time0 μ0 σ0 Time1 μ1 σ1

AA 0.09 1.16 1.26 0.22 2.07 2.48

AI 0.40 5.81 5.40 0.38 5.38 4.30

IA 0.42 6.30 6.02 0.35 4.94 3.73

II 0.09 1.50 1.25 0.04 1.27 1.12

Table 1. Model parameters for speaker turn-taking styles: rela-

tive time in state, and mean and standard deviation of durations

Gamma(α, β).

Trait % C0 % C1 P-value
Gender(Female) 31 67 2e-17

Accent(South Midland) 23 41 5e-06

Initiation(Never) 32 21 0.003

Education(Graduate) 36 28 0.02

Table 2. Selected trait proportions and (unadjusted) p-values. Thus

31% of style 0 speakers are female, as opposed to 67% of style 1 —

gender is not homogeneous across turn-taking styles.

That gender relates to conversational style is well-known from
linguistics [17]. Thus the correlation of turn-taking behavior with
gender is not surprising. However, the nature of other observed
correlations is less evident. Insofar as these capture general rela-
tionships (rather than being artifacts of the corpus), these provide a
means for characterizing speaker traits on a novel data set via robust
natural language processing.

4. EXPERIMENTS

4.1. Prediction of Externals from Turn-Taking Behavior

Cluster-conditional trait distributions can be used to estimate test set
relative frequencies. Let Vi be the estimated (multinomial) distri-
bution for some trait in cluster Ci. Let λ be the estimated cluster
proportions within the test set. Thus we have mixture model

Vpred = λV0 + (1 − λ)V1 (1)

We use λ the relative frequency of hard cluster membership assign-
ments of test observations.

Cluster properties (the association of other traits with turn-taking
behavior) may prove more portable across data sets than mixture
proportions. We partition Switchboard to investigate performance on
matched data, but with different proportions of turn-taking behavior.
The set of speaker sequences {SP

i (t)} are randomly divided into
training and test sets (here sizes 260:260). The training set is used
to train cluster models of D0(t) and D1(t) as before. Test speakers
are assigned to clusters based on minimum sequence cost under the
model of Di(t). Evaluation sets (here of size 100) are chosen at
random from the test members in each cluster to cover a desired
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range of λ ∈ [0, 1] (here 5% increments). We measure predictive
performance via squared error loss, SE = (Vpred −Vobs)

T (Vpred −
Vobs). This investigates a range of evaluation sets, but has fixed

training set. We can estimate RMSE =
“

1
T

PT
j=1 SEj

”1/2

using

squared error over a batch of such experiments (here 200).
Results for selected traits are shown in Figure 5. Note that for

consistency with earlier notation, training clusters are relabeled —
the characteristics of styles 0 and 1 are analogous to those in Sec-
tion 3 perhaps 99% of the time. RMSE is as expected from the
variance due to limited training and evaluation set sizes, with no
evident bias for different mixture proportions. The speaker traits
displayed are all categorical, but differ in number of possible values
and entropy; this explains the different RMSE levels. Strength of
correlation with turn-taking behavior also varies, but plotted curves
are nearly flat since Equation 1 incorporates mixture parameter λ.
For comparison, RMSE from the trait distributions observed on the
training data are also presented; models of turn-taking style improve
estimates of gender and accent on the test data.

Fig. 5. Test distribution RMSE for selected speaker traits over a

range of C0 proportions in the test data, from Equation 1 (black) or

overall training distribution (gray).

5. CONCLUSIONS

This paper has addressed the problem of estimating the proportion
of social correlates from content-derived turn-taking behavior. Some
interesting points emerge from our methodology: a simple stochas-
tic model captures certain aspects of turn-taking behavior, system-
atically different turn-taking styles emerge from clustering via these
models, and turn-taking style is related to other attributes. Our mod-
els can be trained from automatic speech activity marks, so inference
about traits such as education is possible without any manual anno-
tations.

These results are one step within a general program of using
known attributes of a communications graph to estimate desired un-
knowns. While speakers and dialogs are fundamentally different ob-
jects, both lie within the communication graph structure. Thus un-

derstanding of low-level audio features is related to understanding of
such generalities as human behavior.
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