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ABSTRACT

We investigate language model (LM) adaptation in a meeting recog-
nition application, where the LM is adapted based on recognition
output from relevant prior meetings and partial manual corrections.
Unlike previous work, which has considered either completely unsu-
pervised or supervised adaptation, we investigate a scenario where a
human (e.g., a meeting participant) can correct some of the recogni-
tion mistakes. We find that recognition accuracy using the adapted
LM can be enhanced substantially by partial correction. In partic-
ular, if all content words (about half of all recognition errors) are
corrected, recognition improves to the same accuracy as if com-
pletely error-free (manually created) transcriptions had been used
for adaptation. We also compare and combine a variety of adapta-
tion methods, including linear interpolation, unigram marginal adap-
tation, and a discriminative method based on “positive” and “nega-
tive” N-grams.

Index Terms— speechprocessing, languagemodeling, meeting
recognition, unsupervised adaptation, user feedback.

1. INTRODUCTION

A continuing challenge for speech recognition is the domain and
style mismatch between language model (LM) training data and
target application. An attractive potential solution is unsupervised
adaptation, that is, the notion that relevant adaptation data can be
automatically transcribed and, given low-enough error rates, serve
as additional training data for the LM. Past work has shown par-
tial success with this approach, albeit with a substantial degradation
compared to supervised adaptation, i.e., the scenario where human
transcripts of the adaptation data are available [1, 2].

We investigate a hybrid adaptationmethod where humans gener-
ate partially corrected transcripts of relevant data. As in [2], our ap-
plication domain is meeting recognition where a series of multiparty
conversations related by topic and/or style is processed, and each
meeting becomes potential adaptation data for subsequentmeetings.
In such a scenario it is not unreasonable to present meeting par-
ticipants with automatic transcripts of their own contributions, and
allow them to correct recognition errors that are particularly egre-
gious. In fact, meeting participants will often want to so do out of
self-interest, to “set the the record” straight. We are in the process
of implementing such a user-feedback facility as part of the CALO
Meeting Assistant System [3].

We investigate the effectiveness of user correction for LM adap-
tation purposes, by simulating partial transcript corrections in our
manually transcribed data. We also compare and combine a vari-
ety of adaptation methods, including linear interpolation, unigram

marginal adaptation, and a nonstandard method based on discrimi-
native reranking of recognition hypotheseswith “positive” and “neg-
ative” N-gram LMs.

In the literature, user feedback is typically exploited in dictation
systems. Yu et al. have proposed a speech-based correction method
in a dictation system, where the focus is learning new words using
a phoneme recognizer [4]. The language model is updated using a
method similar to cache language modeling [5] only for the rest of
the session. Ogata and Goto, on the other hand, have proposed using
confusion networks to ease the user correction task [6]. We are not
aware of a work which changes the language model based on user
corrections for the following sessions.

In the next section, we will briefly describe the Decipher auto-
matic speech recognition system used in this study. Then Section 3
presents the languagemodel adaptationmethods employed to exploit
the user feedback. Section 4 shows the performance figures obtained
from the experiments simulating user feedback.

2. RECOGNITION SYSTEM

The baseline system for all our experiments is the meeting recog-
nition system jointly developed by SRI and ICSI for the NIST RT-
05S meeting recognition evaluation [7]. This system and its variants
have shown state-of-the-art performance in the 2004, 2005, 2006,
and 2007 NIST evaluations.

The recognizer performs a total of seven decoding passes with
alternating acoustic front-ends: one based on Mel frequency cepstral
coefficients (MFCCs) augmented with discriminatively estimated
multilayer-perceptron (MLP) features, and one based on perceptual
linear prediction (PLP) features. Acoustic models are cross-adapted
during recognition to output from previous recognition stages, and
the output of the three final decoding steps is combined via confu-
sion networks. The speaker-independent acoustic models were first
trained on about 2300 hours of telephone conversations using the
minimum phone error criterion, and then adapted to 104 hours of
meeting speech from a variety of sources. The feature MLPs were
first trained on telephone speech and then adapted to meeting speech.

To limit the scope of our study, we only investigate across-
meeting adaptation of the language model in this paper, i.e., the
LM is adapted before beginning recognition of a meeting, and held
fixed throughout. (Acoustic models are adapted to speakers within
meetings as described above, but not across meetings.) The recog-
nizer uses Kneser-Ney-smoothed bigram, trigram, and 4-gram LMs
at various stages of decoding. The baseline LMs are constructed
by static interpolation of models from different sources, including
(non-CALO) meeting transcripts, topical telephone conversations,
web data, and news; details can be found in [8].
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Meeting sequence # words # speakers # meetings
1 4895 4 5
2 3970 3 5
3 5318 4 3
4 1427 3 2
5 1653 3 5
6 3927 4 5
7 5948 4 5
8 4998 4 5

Table 1. Statistics of meeting sequences used in the experiments.

3. ADAPTATIONMETHODS

Our experiments employ a variety of LM adaptation techniques,
alone or in combination.

3.1. Linear Interpolation

In this computationally simple and time-honored approach (going
back at least to [9]), a separate LM padapt is estimated from the
transcripts (automatic or human generated) of the adaptation data.
The adapted LM is then obtained by forming the linear interpolation
of the baseline LM pbase with padapt:

p�wjh� � �pbase�wjh� � �� � ��padapt�wjh� (1)

The adaptationweight� is optimized on a held-out set. In our imple-
mentation, rather than optimizing word error directly, an expectation
maximization algorithm is used to minimize the perplexity of the
tuning set, as a function of �. As we found in prior work [2], no sig-
nificant degradation is incurred by estimating � on error transcripts
rather than correct transcripts.

If the interpolated LM components are both N-gram models one
can create a single newmerged LM that incorporates the interpolated
probabilities [10]. Therefore, it is straightforward to adapt all LMs
used by the recognition system (including the one used in decoding).

3.2. UnigramMarginal Adaptation

In this approach the baseline LM is modified to change the unigram
marginal probabilities to match the adaptation data, but higher-order
N-gram probabilities are changed as little as possible (in the relative
entropy sense). This approach was proposed by [11]; a fast, approx-
imate version was suggested by [12] in which the adapted LM is

p�wjh� �
pbase�wjh�

�
padapt�w�

pbase�w�

��
Z�h�

(2)

where Z�h� is a normalizing term that ensures the probabilities for
a given history h sum to unity, i.e.,

Z�h� �
X
w

pbase�wjh�

�
padapt�w�

pbase�w�

��

(3)

� is an attenuation parameter controlling how far the adapted esti-
mates deviate from the baseline.

The rationale behind unigram marginal adaptation is that while
higher-order N-gram estimates based on small and errorful adapta-
tion data are bound to be noisy, unigram probabilities should be rel-
atively reliable.

Due to the normalization term (3), marginal adaptation is com-
putationally expensive. We therefore used it only in the N-best
rescoring stages of our system. An implementation [10] that caches
Z�h� for reuse can be very efficient for a typical rescoring applica-
tion since the same history occurs many times.

3.3. Positive / Negative LM Rescoring

The third adaptation method is meant to be discriminative in that it
actively penalizes N-grams that were recognized incorrectly in the
adaptation data. This approach assumes that at least some manually
corrected recognition output is available.

To this end, we compare the automatic hypothesis to the cor-
rected ones and extra two sets of N-grams: those that occur in
the corrected transcripts in regions of recognition errors (the “posi-
tive” N-grams), and those N-grams containing the recognition errors
themselves (the “negative” N-grams). From these N-gram counts,
corresponding “positive” and “negative” LMs are estimated, and N-
best are rescored with each LM. The resulting additional scores are
then combined in a log-linear, weighted fashion with the standard
scores for acoustic and baseline language models. The combination
weights are then optimized discriminatively to minimize word errors
on the held-out tuning set. The “negative” LM scores typically re-
ceive a negative weight in this process, i.e., this results in a penalty
to hypotheses containing N-grams found in the incorrect adaptation
hypotheses. The method is similar to the “anti-languagemodel” pro-
posed in [13].

Also note that this approach resembles the minimum classifica-
tion (or word) error (MCE or MWE) based discriminative language
model training approaches [14]. In MCE-based language model-
ing the probability of the N-grams in the correct (erroneous) string
are increased (decreased) a little. More formally, a misclassification
function is defined to compute the difference between the language
model scores (log probabilities),GLM of the correct string,W�, and
the best hypotheses,W� for a given portion of speech,Xi:

dLM �Xi� � �gLM �Xi�W�� � gLM �Xi�W��

Then the goal is to minimize this misclassification function. A
loss function is defined as:

�

� � exp���dLM �Xi� � ��

Then the generalized probabilistic descent (GPD) algorithm is
employed to update each N-gram score in an iterative fashion. In
that respect, our approach can be considered as a simplified case of
a MCE-based approach since we learn a single weight for all the
adjusted N-grams and we do not iterate.

4. EXPERIMENTS

4.1. Meeting Data

For the CALO-MA project [3], SRI collected eight sequences of
meetings, each with as many as five meetings, totaling 35 meetings
with 32,136 transcribed words. There are 10 speakers in total, with
the same speakers (with some exceptions) occurring throughout a
meeting sequence, but also re-occurring across sequences. Each se-
quence contains meetings on a coherent topic (such as hiring new
staff). Some statistics describing the meeting sequences are given in
Table 1.

We performed across-sequence adaptation using meeting se-
quences 1 through 4 as adaptation data, sequences 5 and 6 for tuning
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Line Model WER (%)
1 Unadapted 16.1
2 Adapted: interp(unsup) 15.4
3 Adapted: interp(unsup) + marg(unsup) 15.4
4 Adapted: interp(unsup) + pos/neg(partial) 15.0
5 Adapted: interp(unsup) + marg(unsup) + pos/neg(partial) 15.2
6 Adapted: marg(unsup) + pos/neg(partial) 15.0
7 Adapted: interp(unsup) + pos/neg(sup) 14.9
8 Adapted: interp(sup) 14.0

Table 2. Meeting recognition results on the test set using unadapted and various adapted language models for rescoring N-best hypotheses.

approx. % of % all errors f-WER (%) c-WER (%)
Line Model content words corrected corrected WER (%) (rel. improv.) (rel. improv.)
0 Unadapted 0 % 0 % 16.1 19.4 12.0
1 Adapted: interp(unsup) 0 % 0 % 15.4 18.5 (-4.6%) 11.3 (-6%)
2 Adapted: interp(partial) 25 % 14 % 15.0 18.3 (-5.7%) 10.8 (-10%)
3 Adapted: interp(partial) 50 % 29 % 14.7 18.0 (-7.2%) 10.4 (-13%)
4 Adapted: interp(partial) 100 % 55 % 14.0 17.6 (-9.3%) 9.4 (-22%)
5 Adapted: interp(sup) 100 % 100 % 14.0 17.4 (-10.3%) 9.5 (-21%)

Table 3. Meeting recognition WER results with varying percentages of content-word errors corrected in adaptation data. Results are also
reported separately for function words (f-WER) and content words (c-WER) along with the relative improvement for these word categories.

and estimation of free parameters, and sequences 7 and 8 for test-
ing. The baseline performance is obtained using the generic LM.
Contrasting experiments employ unsupervised and partially super-
vised adaptation, using methods described in Section 3. As an up-
per bound on adaptation performance, we also ran supervised LM
adaptation using the manual transcriptions of the adaptation meet-
ings. Note that supervised and partially supervised adaptation also
implies adding previously unseen words that occur in the adaptation
hypotheses to the recognizer vocabulary.

In order to simulate user corrections, we assumed that users do
not correct function (or stop) words such as so or the unless they are
part of a larger sequence. Then we simulated user feedback at var-
ious correction levels. For example the word the is also restored in
the word sequence join the CALO project erroneously recognized as
joined kayla project. We do not present the recognition performance
figures for the corrected meetings since we assume that this is not a
functionality of user interest. Instead we only provide performance
figures for the following meetings (which can be of completely dif-
ferent subjects).

4.2. Results and Discussion

Table 2 summarizes the test set word error rates for the unadapted
(baseline) and various adapted language models. For the adapted
LMs we encode the combination of methods used as follows. “in-
terp” refers to linear interpolation, “marg” means unigram marginal
adaptation, and “pos/neg” refers to rescoring with positive/negative
LMs. The hypotheses used in each case are given in parentheses af-
ter the method: “unsup” for raw recognizer hypotheses, “sup” for
manual (fully corrected) transcripts, and “partial” for partially cor-
rected transcripts. Note that, in line 6, the LM adapted by interpola-
tion was not used in N-best rescoring, but was used in generating the
N-best lists, since the other adaptation methods can be used only in
rescoring.

Marginal adaptation does not seem to give an added benefit over
linear interpolation (lines 2 and 3, as well as 4 and 6) on our data;

we therefore did not explore other combinations involving marginals
adaptation since it is computationally expensive. Also, the fact that
adding the marginal-adapted LM to the other two LMs actually de-
grades performance (line 5) indicates that a larger tuning set might
be needed to robustly estimate the required rescoring weights.

The relative error reduction over the unadapted baseline from
supervised adaptation is 13% (lines 1 and 8), and unsupervised adap-
tation (line 4) recovers about one third of that gain (4.3% relative).
However, if we employ partial correction, the gain improves to 6.8%
relative (line 4).

Finally, it seems that rescoring with fully corrected posi-
tive/negative LMs (line 7) gives only a small (0.1% absolute) gain
over the partially corrected version (line 4).

We now turn to a system in which all LMs (both those used
in decoding and those used in rescoring) had been adapted to par-
tially corrected hypotheses obtained from the training data. To sim-
ulate plausible user behavior, we corrected only recognition errors in
regions involving content words, and varied the percentage of cor-
rected errors from about 14% (with a quarter of all content-word er-
rors corrected) to 55% (with all content-word errors corrected). The
results are summarized in Table 3.

As expected, performance improves steadily as more and more
content word errors in the adaptation data are corrected. With half of
all content-word errors (29% of all errors) corrected, the gain over
the unsupervised approach is 0.7% absolute, or half of the gain ob-
tained with fully supervised adaptation.

Maybe surprisingly, however, correcting all content-word error
regions (55% of all errors) gives the same performance as correcting
all errors (i.e., fully supervised adaptation). A possible explanation
is that the LM is already well-trained for non-content words, and
therefore can only be improved in the modeling of content words.
This can further be demonstrated by looking at the f-WER and c-
WER that are computed over function and content words respec-
tively. We see that for function words with supervised adaptation we
get only about 10% of the errors corrected, while we get half of this
improvement just with unsupervised adaptation. On the other hand,
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for content words, with supervised adaptation we fix a bit more than
20% of the errors, while only a quarter of these (6% of the content
word errors) were fixed with unsupervised adaptation. This result
shows that the user feedback for LM adaptation can benefit mostly
the content words, and that it is not necessary to fix all word errors
in order to get the full benefit of supervised adaptation.

In a realistic scenario where the user corrects certain recognizer
errors such as names or abbreviations, meeting after meeting, we
expect to see significant performance improvement in recognizing
them using the partially supervised LM adaptation approach.

5. CONCLUSIONS AND FUTUREWORK

We have explored language model adaptation in a meeting recogni-
tion scenario, specifically investigating an adaptation mode where
a human user or annotator partially corrects transcriptions of the
adaptation data. The proposed method is compared to completely
unsupervised and completely supervised adaptation. We found that
by correcting half the recognition errors and focusing on errors in-
volving content words, the same error reduction was achieved as
with completely supervised adaptation. That improvement was a
13% relative WER reduction over the unadapted system, and a 9%
relative WER over completely unsupervised adaptation. A “lazy”
correction of only a fraction the content word errors in the adap-
tation transcripts yielded correspondingly worse performance, with
unsupervised adaptation as a lower bound. Taken together, these
results suggest that allowing meeting participants to give the recog-
nizer feedback by correcting some of the important misrecognitions
in their own data would an effective way to improve system perfor-
mance over time, giving substantial gain over simple unsupervised
adaptation.

These results were obtained by applying linear interpolation to
all the LMs used by our multi-pass recognition system. Additional
adaptation methods, like unigram marginal adaptation and discrimi-
native modeling of correct/incorrect N-grams, did not give additional
wins.

Future work will include a more exhaustive investigation of the
other adaptation methods on partially corrected hypotheses, such as
MCE, and a thorough error analysis. In particular, we would like to
see if the error reductions on the test data also affect mostly content
words, in accordancewith how the partial corrections were selected.
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