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ABSTRACT
The problem of estimating the parameters of an n-gram lan-
guage model is a typical problem of estimating small proba-
bilities. So far, two methods have been proposed and used to
handle this problem: 1. the empirical Bayes method result-
ing in the Turing-Good estimates. Theses estimates do not
have any constraints and tend to be very noisy. 2. discounting
models like absolute (or linear) discounting. The discount-
ing models are heavily constrained and typically have only a
single free parameter. Both methods can be formulated in a
leaving-one-out framework.
In this paper, we study methods that lie between these two

extremes. We design models with various types of constraints
and derive efficient algorithms for estimating the parameters
of these models. We propose two novel types of constraints or
models: interval constraints and the exact extended Kneser-
Ney model. The proposed methods are implemented and ap-
plied to language modelling in order to compare the methods
in terms of perplexities. The results show that the new con-
strained methods outperform other unconstrained methods.
Index Terms— language modelling, language smooth-

ing, leaving one out, Kneser-Ney smoothing

1. INTRODUCTION

One of the most widespread models used in language mod-
elling is the n-gram model [1]. Due to the large number of
free parameters and the always existing scarce data problem,
we have to resort to smoothing techniques. The events that
occur only once or not at all typically represent a huge per-
centage of all n-gram events. Therefore, the probabilities of
these events are difficult to estimate with conventional meth-
ods since there are not enough observations of them in the
training data.
A solution to the small probability problems is to apply

Bayesian theory [2]. This theory introduces a prior distribu-
tion over the parameters that alleviate the estimation prob-
lems. There are several ways to select the prior distribution.
From the smoothing point of view, empirical Bayes [3] is
one of the most appealing ones. In particular, it results in
the leaving-one-out (LOO) estimation [4]. Previous studies
have shown that smoothing methods based on LOO are able
to counteract the scarce data problems.
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The first smoothing method that used the LOO esimates
was the Turing-Good method [5, 6]. Unfortunately, the
Turing-Good estimates are still very noisy, i.e. they are over-
fitted to the underlying noisy distribution produced by the
data spareness. Furthemore, the Turing-Good estimates do
not guarantee the monotonicity of the probaility estimates.
In order to avoid these problems, absolute discounting in-
troduced in Kneser-Ney (KN)1 smoothing [7] assumes a
smoothing model with just a single free parameter. Thus, the
Turing-Good method and the absolute discounting method
represent two extremes, namely either no constraints at all or
a heavily constrained model with only a single parameter.
In this paper, we focus on finding a trade-off between

the number of free parameters and suitable constraints in
order to avoid over-trained estimates and achieve optimum
performance. This idea was previously outlined in [7], where
monotonic and interval constraints were suggested. The novel
contributions of this paper are the following:

• We propose new discounting methods that lie between
the two extremes mentioned, namely the Turing-Good
method and absolute discounting (Kneser-Ney).

• We show how the associated estimates can be computed
efficiently from the training data.

• We carry out systematic experiments for two language
modelling tasks and compare the performance of these
methods.

The paper is organised as follows. First, an introduction to
language modelling is covered in section 2. In section 3, the
LOO method is reviewed to pave the way for the new propos-
als. The novel estimating methods are introduced in section 4.
In section 5, we report experimental results. Concluding re-
marks are discussed in section 6.

2. LANGUAGE MODELLING

Language modelling (LM) consists in modelling the proba-
bility of a word sequence, wL

1 . One of the most widespread
techniques for LM is the n-gram models [8], where the prob-
ability, p(wL

1 ), is modelled as follows

p(wL
1 ) =

L∏
l=1

p(wl|w
l−1
1 ) =

L∏
l=1

p(wl|h) (1)

1We adhere to the widely used terminology, with apologies by the second
author for this breach of modesty.
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where the previous word history wl−1
1 is approximated by the

n − 1 most recent words, h.
In order to alleviate problems derived from scarce data

several smoothing techniques for n-gram models have been
proposed. All these smoothing techniques, discount a prob-
ability mass Bh from all seen n-grams and for each history
h; and, then, redistribute it according to a smoothing distribu-
tion, β(·). For instance, the linear interpolation [1] distributes
the gained probability mass Bh among all words according
to the smoothing distribution β(w, h̄). On the other hand, the
backing-off redistributes the probability only among the un-
seen events, according to β(w, h̄). Note that h̄ stands for the
previous history h where we have dropped the furthest word.
Some of the smoothing techniques [1] are based on the

LOO estimation. For instance, Turing-Good smoothing [1],
the KN [8], or Katz’s smoothing [4].
The first proposed smoothing based on LOO, Turing-

Good degradates the probability estimates as the n-gram oc-
curs more frequently. The KN smoothing solved this problem
by approximating all the probabilities with just one parame-
ter. In this work we present some novel estimation methods
to avoid the sparsity problems for the Turing-Good counts.
Given a training dataset, we define N(w, h) as the num-

ber of occurrences of the n-gram hw in this dataset. For any
smoothing technique based on the LOO approach, we define
the modified counts r∗ as

r∗ = prN (2)

where pr is joint probability assigned by the LOO smoothing
to the n-gramswhich have occurred r times in the corpus. For
a given n-gram such thatN(w, h) = r, we will useN∗(w, h)
to refer to the modified count, r∗.
Using these modified counts, the smoothed probability is

defined as follows

p̃(w|h) =

{
N∗(w,h)

N(h) N(w, h) > 0

Bhβ(w|h̄) otherwise
(3)

with Bh = [
∑

w:N(w,h)>0(N(w, h)−N∗(w, h))]/N(h) and
N(h) =

∑
w N(w, h); and where the distribution β(w|h̄) is

also obtained by LOO [8].

3. REVIEW OF UNCONSTRAINED LEAVING ONE
OUT (LOO)

The leaving-one-out (LOO) estimation technique was intro-
duced for language modelling in [8] as a smoothing tech-
nique and can be summarized as follows. Each possible event,
(w, h), is assigned its count in the training data, N(w, h).
We form equivalence classes by gathering all events with the
same count r = N(w, h) into the same equivalence class.
Then, we count the number of events in each class with count
r = 0, 1, ..., R and denote them by nr. These quantities
are often referred to as counts of counts (COC) because they
count how often each count r occurs in the training data. In
particular, the count n0 refers to the number of events that
have not been observed in the training data.
By leaving one out, an observation in equivalence class

with count r is moved into the equivalence class with count

r − 1. Therefore, the associated probability pr = p(w, h)
with N(w, h) = r, is replaced by pr−1. If we repeat this pro-
cess for all equivalence classes r = 1, ..., R, we obtain the
LOO log-likelihood as a function of the unknown probabili-
ties pR−1

0 := p0, p1, ..., pR−1 as follows

F (pR−1
0 ) =

R∑
r=1

rnr log pr−1 (4)

Since there are nr events each with probability pr, the follow-
ing constraint must be satisfied∑R

r=0 nrpr = 1 (5)

The probability pR is not used in the LOO log-likelihood
function. Instead, we estimate it by relative frequency

pR = R/N (6)

The optimal probability estimates are obtained when
Eq. (4) is maximised constrained by Eqs. (5) and (6)

pr =
(1 − nRpR)

N

(r + 1)nr+1

nr

r = 0, . . . , R − 1 (7)

We typically want the LOO estimates to be ’close’ to the rela-
tive frequencies, since the conventional maximum likelihood
approach results in those relative frequencies

pr = r/N r = 0, . . . , R − 1 (8)

4. CONSTRAINED LEAVING ONE OUT

The original LOO estimates as introduced in the previous sec-
tion suffer from over-training. In particular they do not need
to be monotonic. In this section, we will constrain the LOO
probabilities pr with interval constraints to enforce the mono-
tonicity of the probability estimates pr. Additionally, we ex-
tend the modified Kneser-Ney (mKN) giving the optimal an-
alytical solution.

4.1. Interval Constraints

The goal of this method is to modify the conventional prob-
abilities as given in Eq. (8) only a little bit. Therefore, we
introduce what we call the interval constraints

(r − 1)/N ≤ pr ≤ r/N r = 1, . . . , R − 1 (9)
p0 ≤ 1/N (10)

The idea of applying this constraints was previously outlined
in [7], where a heuristic and not optimal solution was pro-
posed and analysed. In order to obtain an optimal solution to
the problem we use the Karush-Kuhn-Tucker (KKT) condi-
tions [9].
The KKT conditions result in estimates that depend on a

normalisation constant λ

pr(λ) = max{
r − 1

N
, min{

1

λ

(r + 1)nr+1

nr

,
r

N
}} (11)
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The interpretation of this equation is as follows. We compute
the unconstrainedLOO estimate pr = (1/λ)[(r + 1)nr+1]/nr,
with the unknown normalisation constant λ. This estimate is
then compared with the lower and upper bound; and finally, it
is clipped if necessary. Now the problem is that this compari-
son requires the normalisation constant to be known. To this
purpose we introduce the λ depending normalisation function

Q(λ) =
∑R

r=0 nrpr(λ) (12)

Therefore, the normalisation constraint is reformulated as
Q(λ) = 1. Since Q(λ) is a monotonically decreasing func-
tion, the value for λ can be easily computed.
Note that in order to ensure monotonicity the constraint

p0 ≤ p1 must be added to the algorithm. However, its ad-
dition does not significantly modify the algorithm, though it
becomes more awkward. Anyway, this constraint is always
verified in practice, and hence, it becomes useless.

4.2. Exact extended Kneser-Ney smoothing

The extended KN smoothing [7] method reduces the number
of free parameters by using an absolute discounting model for
counts larger than a given threshold S

pr =
(r − d)

N
∀r ≥ S (13)

where the parameter d is the so-called discounting parameter.
Obviously, this method does not guarantee that the remain-
ing probabilities pr for r = 0, 1, ..., S − 1 are monotonic.
Whether monotonicity is satisfied or not depends on the train-
ing data and the given threshold S.
This estimation technique was initially presented with a

fixed threshold, S = 1 [8], and afterwards extended to S =
3 [1]. Nevertheless, no exact solution was given for the esti-
mation if S > 1. In this section, we analyse the exact solution
for this estimation approach using LOO.
Since the probabilities, pr, with r larger than S − 1 de-

pend on d as expressed in Eq. (13); the LOO log-likelihood
function in Eq. (4) is rewritten to

F (pS−1
0 , d)=

S∑
r=1

rnr log pr−1 +

R∑
r=S+1

rnr log
r−1 −d

N
(14)

subject to the normalisation constraint rewritten as

S−1∑
r=0

nrpr +

R∑
r=S

nr

r − d

N
= 1 (15)

The solution that maximises Eq. (14) constrained by
Eq. (15) is given by

pr(d) =
1

λ(d)

(r + 1)nr+1

nr

, r = 0, . . . , S−1 (16)

where the normalisation constant depends on d as follows

λ(d)=

(
R∑

r=S+1

rnr

r − 1 − d

)(
R∑

r=S

nr

N

)−1

(17)

Table 1. Some basic statistics for the Wall Street Journal.
Training WSJ
sentences 1.62M
avg. length 26.0
running words 42.12M
vocab. size 200.1K
n1/N (1-gram) 0.17%
n1/N (2-gram) 18.1%
n1/N (3-gram) 28.5%

Table 2. Out of vocabulary words (OOV) in test for each
training partitions.

50K 100K 1, 000K full size
OOV Rate [%] 1.7 1.1 0.3 0.3

Similarly to section 4.1, we reformulate the normalisation
constraint in Eq. (15) by definingQ′′(d) as follows

Q′′(d) =

S−1∑
r=0

nrpr(d) +

R∑
r=S

nr

r − d

N
(18)

and requiring it to be equal to 1, Q′′(d) = 1.
The function Q′′(d) is again monotonically decreasing,

and therefore it is straightforward to find the optimal value d̂

such that Q′′(d̂) = 1
Unlike original and modified KN, we have not made any

approximation in order to obtain the exact value for d̂ and p0.
Moreover, the threshold count S is not fixed beforehand to be
neither 1 (KN), nor 3 (mKN).

5. EXPERIMENTS

In this section, the practical performance of the proposed es-
timation techniques is analysed in a language modeling task.
The perplexity [10] on a test set will be used to compare
among the techniques. The less the perplexity is, the better the
model is. In order to quantify the impact of the techniques, we
have compared all the techniques with the baseline perplex-
ity given by the mKN smoothing [1] and original KN [7]. In
order to obtain this baseline, we have used the standard tool
SRILM [11].
Table 1 summarises some statistics about the corpus used

in the experiments: the Wall Street Journal (WSJ) [8]. For the
test set, we have selected an small percentage of paragraphs
from all the years, in order to gain independence on the test set
with respect to time factors. The test set is made up of 12.5K
sentences with an average length of 26.1 comprising 326.3K
running words. Finally, in order to analyse the behaviour of
all the techniques as a function of the training size, we have
splitted the training into increasing sizes ranging from 50K
sentences to the full corpus.
We used all the training vocabulary in order to carry out

all the experimentation. For modelling the out of vocabulary
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Table 3. Perplexities for trigram language models on the corpus. Sk OOV column stands for the perplexity skipping the OOV,
while the All column accumulates all the events (OOV and known).

N. of trainig sentences 50K 100K 1M 1.62M
All Sk OOV All Sk OOV All Sk OOV All Sk OOV

modified Kneser-Ney 154.0 154.3 137.7 136.7 94.2 93.4 87.3 86.7
Kneser-Ney 150.5 149.2 134.6 132.7 92.6 91.7 85.9 85.2
Interval 150.0 148.0 134.2 131.9 92.4 91.4 85.7 84.9

extended exact KN (S = 3) 151.4 149.6 134.8 132.4 90.8 89.8 83.8 83.0

words (OOV) we reserved the smoothing probability mass for
the unigram unseen events. In order to do so, the full vocabu-
lary size must be known. Although, any sensible estimation of
the size suffices, we have extrapolated the number of unseen
words in the vocabulary from the seen words. Moreover, we
also report perplexities skipping OOV in order to quantify the
influence of the unknown events. Table 2 depicts the percent-
age of OOV in test as a function of the training size of our
corpus partition.
The influence of the threshold count S (for the eeKN) in

the perplexity is not significant since moderate values obtain
similar perplexities as long as the training data is not scarce.
For instance, if the training is performed on the full corpus,
then the perplexity is within the range [83.75, 83.91], for all
S = 1, 2, . . . , 128.
Table 3 summarises the perplexities obtained using a tri-

gram language model. We have obtained results for bigrams
and fourgrams, as well, showing a similar behaviour. From
the table we conclude that all the proposed techniques per-
form at least as baseline techniques, being better under some
circumstances. The best technique for small training data is
the interval constrained LOO, which obtain the best results
for scarce training sizes (50k and 100K). On the other hand,
as the size of the corpus increases, the best technique is the
exact extended Kneser-Ney.

6. CONCLUSIONS

Conventional smoothing models based on leaving one out es-
timates represent two extremes. On the one extreme the ab-
solute discounting (KN) reduces the number of parameters to
estimate to one. On the other extreme the Turing-Good esti-
mates all the LOO probabilities, producing over-fitted proba-
bilities.
In this paper we have proposed novel discountingmethods

that are less restrictive than absolute discounting approaches,
but more restrictive than Turing-Goodmethod. Therefore, we
explore the gap in which we try to optimise the tradeoff be-
tween the number of parameters and data scarcity.
Specifically, we have proposed two novel discounting

methods based on constraining leaving one out estimates: in-
terval constraints and the exact extendedKneser-Ney smooth-
ing. We have also presented the associated estimation algo-
rithms needed to compute the discounted estimates in an
efficient way. Systematic experiments have also been per-
formed in order to compare the proposed methods with other
standard discounting methods. This experimentation reports

improvements over the baseline smoothing under some cir-
cunstances.
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