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ABSTRACT
This paper introduces a discriminative training for language models
(LMs) by leveraging phoneme similarities estimated from an acous-
tic model. To train an LM discriminatively, we needed the correct
word sequences and the recognized results that Automatic Speech
Recognition (ASR) produced by processing the utterances of those
correct word sequences. But, sufficient utterances are not always
available. We propose to generate the probable N-best lists, which
the ASR may produce, directly from the correct word sequences
by leveraging the phoneme similarities. We call this process the
“Pseudo-ASR”. We train the LM discriminatively by comparing the
correct word sequences and the corresponding N-best lists from the
Pseudo-ASR. Experiments with real-life data from a Japanese call
center showed that the LM trained with the proposed method im-
proved the accuracy of the ASR.

Index Terms— Discriminative Training, Language Model, Phoneme
Similarity, Finite State Transducer

1. INTRODUCTION

In order to reduce the error of the Automatic Speech Recognition
(ASR), discriminative training is widely used for acoustic models
(AMs) [1, 2], language models (LMs) [3, 4, 5, 6], and decoding
graphs [7, 8]. To conduct discriminative training, we needed the
correct word sequences and corresponding utterances. In discrim-
inative training, we had the ASR recognize the utterances and got
the results. Then by comparing the correct word sequences and the
recognized results, we discriminatively trained the AM, the LM, or
the decoding graph.

Considering that building an AM is expensive and time-consuming,
once we build an AM for a certain environment, such as telephony
environment, we sometimes use it for several applications. As re-
gards an LM, we need to build new ones for each application. It’s
obvious that Business-Finder [9] and Help-Desk [10] cannot be im-
plemented with the same LM even though both are telephony appli-
cations1. In this paper, we consider the situation that we are build-
ing a new application by building an application-specific LM and
reusing a general AM. In this case, we can only use the text data that
was collected to build an LM. Sufficient utterances to build an AM
or to discriminatively train an AM, an LM or a decoding graph are
not available.

We propose a new framework for discriminative training of an
LM, which doesn’t require utterances. The key idea of this paper
is to obtain probable N-best lists directly from the correct word se-
quences by leveraging phoneme similarities estimated from the AM
and to discriminatively train the LM based on these N-best lists. We
call the former process the “Pseudo-ASR”. In the Pseudo-ASR, be-
cause we estimate the phoneme similarities from the AM which are
used to recognize the test utterances (in real deployment), we can
expect to obtain “reliable” erroneous N-best lists.

1An application-specific AM is preferable, but a general one can work.
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Figure 1. Intuitive Flow of Pseudo-ASR

2. PROPOSED METHOD
In this section, we describe our proposed method, in which no ut-
terance data is required to train the LM discriminatively. In the pro-
posed method, we have the Pseudo-ASR generate the N-best lists
from the correct word sequences. Then we train the LM discrimina-
tively by comparing the correct word sequences and the correspond-
ing N-best lists. In the rest of this section, we explain the Pseudo-
ASR in detail and the discriminative training of the LM based on the
N-best lists from the Pseudo-ASR.

2.1. Pseudo-ASR
Fig. 1 shows the intuitive flow of the Pseudo-ASR:

Stage 1. A word sequence “w1w2” is converted into a phone se-
quence “p11 · · · p14p21 · · · p25” by consulting the lexicon2.

Stage 2. Similar phones whose similarities are estimated from the
AM are added with probabilities to the phone sequence3. For
example, the phone “p′13” and “p′′13” which are similar to “p13”
are added.

Stage 3. Combined with the lexicon which converts a phone se-
quence into a word and the LM which assigns a probability
to a word sequence, an N-best list of word sequences can be
produced from the phone sequence.

In order to compare a standard ASR and the Pseudo-ASR, we
briefly explain how the standard ASR produces the N-best list. Given
the speech signal X , the standard ASR produces the h-th best hy-
pothesized word sequence Wh that satisfies the following Equa-
tion (1):

2The lexicon contains the pairs of a word and its corresponding phone
sequence

3Probability values are not depicted in Fig. 1 to avoid confusion.
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Wh = argmax
W �=W1,··· ,Wh−1

g(X,Wh; Λ,Γ) , (1)

where g(X,Wh; Λ,Γ)

= α logP (X|Wh,Λ) + logP (Wh|Γ) . (2)

Λ is the AM, Γ is the LM, and α is the inverse of the LM weight.
In the proposed Pseudo-ASR, we estimate the first term of the right
side of Equation (2) based on the similarities between the phones.
Considering the intuitive flow in Fig. 1, the first term is embedded
in the process of adding the similar phones (Stage 2).

We explain each stage of the Pseudo-ASR from the viewpoint of
implementation. In Stage 1, we convert a correct word sequence into
a phone sequence by looking up the lexicon. We express a phone se-
quence as a finite state acceptor (FSA) PS. Stage 2 and Stage 3 are
implemented as the composition of several finite state transducers
(FSTs). The following composition (3) is calculated for each input
phone sequence PS and a Viterbi search is conducted over WG,
producing the N-best list.

WG = ((( PS ◦ PP ) ◦ LX ) ◦ LM ) . (3)

The FSTs are defined as:

PP : Phone to Phone FST LM : LM
LX : Lexicon WG : Word Graph

Stage 2 corresponds to the composition of (PS ◦ PP) and Stage 3
to the remaining compositions and the search over the WG.

We explain how each FST is prepared.

2.1.1. PP: Phone to Phone FST
This FST adds phones to the PS based on the similarities between
the phone in the PS and the other phones. Intuitively, similar phones
are more likely to be misclassified in the ASR[11, 12]. In other
words, this FST simulates the AM of the ASR in the process of
Pseudo-ASR.

The similarities between each phone are estimated from the AM.
In the AM, each phone is represented as a 3-state, left-to-right HMM.
Each state of the HMM is modeled by a mixture of Gaussians. For
each phone, we select the Gaussian with the biggest weight in the
middle state as the representative Gaussian of this phone. Then for
each pair of the phones, we calculate the Bhattacharrya Distance
(BD) between the representative Gaussians and regard this as the
distance between the phones [13]. The BD between two Gaussians
N(μi,Σi) and N(μj ,Σj)is defined as:

BD =
1

8
μT
ij(

Σi +Σj
2

)−1μij +
1

2
ln

|(Σi +Σj)/2|
|Σi| 12 |Σj | 12

,

where μij = μi − μj .

The probability prob(pj|pi) that the phone pi is replaced with pj is
defined based on the BD bdij between them as:

prob(pj|pi) = exp(−1× bdij)/
∑

k

exp(−1× bdik) .

Since the BD between a phone and itself is 0, the probability
prob(pi|pi), meaning that the phone pi is not replaced with another
phone, is the highest among prob(pk|pi) for all k.

Our set of phones contains the phone of silence pSIL. By lever-
aging this pSIL, we can handle the insertion and the deletion of the
phones. The insertion of the phone pi can happen at any position in
PS with prob(pi|pSIL). The probability of the deletion of the phone
pi is prob(pSIL|pi).

Fig. 2 shows a subset of PP . The PP is represented as a self-
loop FST. The transition “pi : pj / prob(pj|pi)” means that this FST

Figure 2. Subset of Phone to Phone FST PP
accepts pi and outputs pj with the probability prob(pj|pi). The tran-
sition “pi : ε / prob(pSIL|pi)” expresses the deletion of pi, meaning
that this FST accepts pi and outputs no phone with the probability
prob(pSIL|pi). The transition “ε : pi / prob(pi|pSIL)” expresses the
insertion of pi, meaning that this FST accepts no phone and outputs
pi with the probability prob(pi|pSIL).

In order to reduce the computational cost, we limit the number
of pairs of the phones included in the PP . First, we sort all of the
pairs in descending order of prob(pj|pi). Then we select the top C
pairs.

2.1.2. LX : Lexicon
This FST converts a phone sequence into a word. An LX is con-
structed from the lexicon. For example, this FST accepts the phone
sequence “S P IY CH” and outputs the corresponding word “speech”.
After the composition of (( PS ◦ PP ) ◦ LX ), the input phone se-
quence PS is converted to a word sequence.

2.1.3. LM: LM
This FST assigns probabilities to word sequences. An LM can be
represented as an FST [14].

2.1.4. WG: Word Graph
With the composition (3), a word graph WG is constructed. Then by
performing a Viterbi search over this word graph, the N-best list for
the input phone sequence PS is produced.

2.2. Discriminative Training
By comparing the correct word sequence and the corresponding N-
best list generated by the Pseudo-ASR, we train the LM discrimina-
tively. As an algorithm for discriminative training of the LM using
speech data, the article [4] describes the algorithm based on the cor-
rect word sequence and the N-best list from the ASR. We leverage
this algorithm by replacing the ASR with the Pseudo-ASR.

Given a correct word sequenceW0 and its corresponding phone
sequence PS, the h-th best hypothesized word sequenceWh of the
Pseudo-ASR satisfies the following Equation (4):

Wh = argmax
W �=W1,··· ,Wh−1

gpseudo(PS,Wh; Λ,Γ) , (4)

where gpseudo(PS,Wh; Λ,Γ)

= α logP (PS|Wh,Λ) + logP (Wh|Γ) . (5)

Λ is the AM, Γ is the LM, and α is the inverse of the LM weight.
Note that the first term of Equation (5) is estimated by multiplying
the probabilities “prob(pj|pi)” based on the similarities between the
phones, which is a different approach from Equation (2).

The misclassification function is defined as follows:

d(PS; Λ,Γ) = −gpseudo(PS,W0; Λ,Γ)

+Gpseudo(PS,W1, · · · ,WN ; Λ,Γ) ,

where the anti-discriminant function based on the N-best list is de-
fined as:

Gpseudo(PS,W1, · · · ,WN ; Λ,Γ) =

log(
1

N

N∑

r=1

exp[gpseudo(PS,Wr; Λ,Γ)η])
1
η .
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Table 1. Statistics of Test Data / CER
Test Data CER

call Gender # of Baseline Proposed
ID characters (0 iteration) (25 iterations)

A F 1,611 20.2 19.8
B M 2,122 28.8 27.6
C F 1,934 35.6 33.6
D M 1,196 18.4 18.1
E F 1,631 26.5 26.1
F M 1,887 28.2 28.5
G F 3,694 37.1 36.5
H F 1,248 35.4 34.6

Total – 15,323 30.2 29.4

η controls how the different hypotheses are weighted. A sigmoid
function which limits the range from 0 to 1 is used for the class loss
function:

l(PS) = l(d(PS)) =
1

1 + exp(−γd(PS) + θ)
,

where γ and θ are the parameters of the sigmoid function. By the
generalized probabilistic descent (GPD) algorithm, the parameters
of the LM can be updated iteratively with the learning rate s as:

Γt+1 = Γt − s∇l(PS; Λt,Γt) .

By focusing only on the LM while not changing the AM, the gradient
of the loss function becomes:

∇l =
∂l

∂d

∂d(PS; Λ,Γ)

∂Γ
. (6)

The first term of Equation (6) is based on the sigmoid function:

∂l

∂d
= γl(d)(1− l(d)) .

The second term can be calculated based on the frequency of the
word n-gram sequence w appearing in the correct word sequence
W0 and its corresponding N-best list produced by the Pseudo-ASR:

∂d(PS; Λ,Γ)

∂pw
= [−I(W0,w) +

N∑

r=1

CrI(Wr,w)] ,

where Cr =
exp[g(PS,Wr; Λ,Γ)η]

∑N
j=1 exp[g(PS,Wj ; Λ,Γ)η]

and I(Wk,w) (k = 0, 1, · · · , N) denotes the frequency of the
word n-gram sequence w appearing in the word sequenceWk.

3. EXPERIMENT
We conducted an ASR experiment to verify whether the LM trained
discriminatively with the proposed method improved the accuracy
of the ASR. We describe our experiment here. Then we show our
results and discuss them.

3.1. Experimental Setup
We conducted the experiment using real-life data from a Japanese
call center. We randomly selected 8 calls and used the utterances
of the agents as the test data4. The left side of Table 1 shows the
statistics of the test data. The first column is the call ID, the second
is the gender of the agent and the third is the number of characters in
the transcribed text.

We built the AM of 57 phones for the telephony environment, es-
timated the baseline 3-gram LM with modified Kneser-Ney smooth-
ing [15] from the corpus of 234,998 sentences, and prepared the lex-
icon of 20,652 words with 22,132 pronunciations. The baseline ASR
is composed of these AM, LM, and lexicon.

4We decided not to use the utterances of the customers because they speak
so freely and variably that the accuracy of ASR tends to be extremely poor.

Table 2. Coverage Ratios of 1,2,3-grams in 100-best from Baseline
ASR by Those in 100-best from Pseudo-ASR.

1-gram 2-gram 3-gram
Coverage 0.977 0.742 0.677

Corpus

Lexicon

AM

Baseline
LM

N-best
3 4 4 4

2

1

1

4

Discriminatively
trained LM

55

5

6

Figure 3. Flow of Experiment

3.2. Performance of Pseudo-ASR
The performance of discriminative training is affected by how close
the N-best lists from the Pseudo-ASR are compared to those from
the ASR. In order to examine how the Pseudo-ASR works, we con-
ducted a preliminary experiment. We selected 275 utterances from
the test utterances. We had the baseline ASR produce the 100-best
lists from the utterances and had the Pseudo-ASR produce the 100-
best lists from the transcriptions of the same utterances. Then we
investigated how well the 1-grams, 2-grams, and 3-grams included
in the 100-best lists from the baseline ASR are covered by those
from the Pseudo-ASR. The coverage ratios are shown in Table 2.
Because the Pseudo-ASR and the baseline ASR are not the same,
the coverage ratios were smaller than 1. However, considering that
the Pseudo-ASR didn’t use any utterances to generate the N-best
lists, it produced similar results to the results of the baseline ASR.
Therefore we can expect that the N-best lists from the Pseudo-ASR
contribute to discriminative training for LMs.

3.3. Flow of Experiment
Fig. 3 provides the flow of our experiment. The numbers in Fig. 3
correspond to the numbers of the following steps:

Step 1. Prepared the LX from the lexicon. Estimated the PP from
the AM based on the similarities between the phones as writ-
ten in Section 2.1.1. Note that the same LX and the same
PP were used in the following iterations.

Step 2. Converted the baseline LM to the FST LM.

Step 3. Randomly selected 500 sentences from the corpus5 and con-
verted each sentence into a phone sequence by looking it up
in the lexicon. Each phone sequence is expressed as an FSA
PSi(i = 1, 2, · · · , 500).

Step 4. Had the Pseudo-ASR generate an N-best list from each PSi .

Step 5. Trained the LM discriminatively based on the selected 500
sentences and their corresponding N-best lists.

Step 6. Converted the discriminatively trained LM to the FST and
returned to Step 3.

We trained the LM iteratively multiple times by iterating Step 3 to
Step 6. Note that in Step 5, the baseline LM was discriminatively
trained in the first iteration and then the LM trained in the previous
iteration was trained discriminatively in the following iteration.

After each iteration, we replaced the baseline LM in the baseline
ASR with the discriminatively trained LM and evaluated the ASR
accuracy with the test data.

5Equivalent to the “Semi-Batch” mode in the article [16]
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For the constant values of the Pseudo-ASR, we set the number
of the pairs of the phones in PP to C = 500 and the number of
the N-best list to N = 100. For the parameters of discriminative
training, we set s = 0.001, η = 0.1, γ = 0.5, and θ = 0. We
decided on these values empirically based on a pilot experiment.

3.4. Evaluation and Discussion
First, we explain the criterion for evaluation. To measure the ASR
accuracy, we used the Character Error Ratio (CER). The reason is
that ambiguity exists in word segmentation in Japanese. For exam-
ple, “ (Governor of Tokyo)” can be segmented into words
in four ways: (1) “ ”, (2) “ / ”, (3) “ /

”, and (4) “ / / ”. In all cases, the same characters
are used and the number of characters remains 5. However, the num-
ber of words seems to change from 1 to 3 because of the ambiguity,
so the Word Error Rate (WER) fluctuates accordingly. Therefore,
the CER is a more suitable criterion in Japanese.

The right side of Table 1 on the previous page shows the CER
for the test data. The fourth column is the CER of the baseline
ASR. The fifth column is the CER after 25 iterations of discrimi-
native training, which resulted in the best accuracy. Fig. 4 shows the
average CER for the test data over the iterations6. Fig. 5 shows the
perplexity for the transcribed test data over the iterations.

Though the proposed method doesn’t require any speech data
to train the LM discriminatively, there was an improvement from
30.2% to 29.4% in the CER. This improvement was statistically sig-
nificant at the 5% level. The perplexity increased slightly over the it-
erations because the proposed discriminative training is not intended
to reduce the perplexity. The increase of the perplexity didn’t have
any negative effect on the CER.

4. CONCLUSION
We proposed an acoustically discriminative training for an LM with-
out using the speech data. In our proposed method, we generate
the probable erroneous N-best list of word sequences directly from
the correct word sequence by using the Pseudo-ASR that leverages
the similarities between phones in the AM. Then we train the LM
discriminatively based on the correct word sequences and the corre-
sponding N-best lists. Note that multiple iterations of the Pseudo-

6Iteration 0 means the baseline ASR

ASR on many word sequences are computationally heavy, but this
process is highly parallelizable.

We conducted an experiment with real-life data from a Japanese
call center. The results showed that the proposed method improved
the accuracy of the ASR, even though the proposed method doesn’t
require any speech data to train the LM discriminatively.

In the proposed method, we ignored the phone contexts when es-
timating the similarities between phones. Taking the phone contexts
into consideration may improve the performance. Other sophisti-
cated techniques to estimate the similarities between phones [17, 18,
19] may also help.
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