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ABSTRACT

Providing punctuation in speech transcripts not only improves read-
ability, but it also helps downstream text processing such as infor-
mation extraction or machine translation. In this paper, we improve
by 7% the accuracy of comma prediction in English broadcast news
by introducing syntactic features inspired by the role of commas as
described in linguistics studies. We conduct an analysis of the im-
pact of those features on other subsets of features (prosody, words...)
when combined through CRFs. The syntactic cues can help charac-
terizing large syntactic patterns such as appositions and lists which
are not necessarily marked by prosody.

Index Terms— Speech Processing, Punctuation, Machine
Learning

1. INTRODUCTION

Automatic speech recognition systems typically output an unanno-
tated sequence of words. This stream of words is devoid of punc-
tuation, capitalization, formatting, and other such structural infor-
mation, making it challenging for humans to read and for machines
to process. In particular, unannotated word sequences pose a chal-
lenge for downstream natural language processing modules that have
been trained on annotated text. Various approaches for punctua-
tion restoration have been proposed in the literature; they generally
take advantage of lexical, prosodic and structural information, as
in [1, 2, 3] for instance. Most previous work in punctuation restora-
tion has focused on sentence boundaries, leaving apart sentence in-
ternal punctuation.

In this paper, we focus on subsentential punctuation, specifically
on commas. Restoring commas have been shown to help Chinese
part-of-speech tagging [4] and English information extraction [1, 2].
Comma restoration can also help in finding appositions (“Mark, my
old friend, ...””), which can aid coreference resolution, thereby aid-
ing generally further language processing tasks, such as question
answering and summarization. Comma restoration is challenging,
however, because the different contexts in which a comma is used
(e.g., noun phrase lists, versus appositions, versus dates) do not nec-
essarily share syntactic or prosodic features. Moreover, not all com-
mas are mandatory or used stylistically in the same way across dif-
ferent individuals or different communication styles. This factor re-
duces inter-annotator agreement and can result in less accurate train-
ing and testing for learning systems.

Previous work on automatic comma detection has used hidden-
event language models (HELMs) trained from large text corpora in
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combination with a local classifier (Boosting [4], Maxent [3], Neural
Networks [5] or decision trees) trained from a smaller speech cor-
pus. Such systems essentially rely on prosodic information (pause
duration, pitch and energy discontinuities, phoneme duration) and
lexical features (words and part-of-speech tags) for detecting com-
mas at inter-word boundaries. In the linguistics community, the role
of commas is often described according to syntactic patterns such
as in [6] for Wall Street Journal text. A large number of such pat-
terns include long-range dependencies that are out of scope for a
local model such as that one applied in [4]. In the best case, part-
of-speech tag sequences can characterize word boundaries at which
a comma should not be added, such as between a determiner and a
noun. But they are less able to capture the many positive instances
in which a comma should be inserted.

In this paper we propose a novel approach to integrating more
sophisticated syntactic features for automatic comma prediction.
Specifically, we aim to capture long distance information. We test
different feature subsets and their interaction with parsing features
when modeled by a CRF classifier. The output of this classifier is
then combined with a factored HELM (fHELM), an extension of the
factored language model that can handle multiple streams of features
(here, words and part-of-speech tags). The syntactic features result
in an improvement of 7% relative over the basic set of features.

The paper is organized as follows: Section 2 describes the mod-
els involved in our comma prediction system. Section 3 details the
different features used for classification, with a focus on our novel
syntactic pattern features. We then present experiments on the TDT4
English Broadcast News corpus to show the benefit of the new fea-
tures (Section 4). A discussion is provided in Section 5.

2. MODELS

In this work, comma annotation is formalized as a binary classifi-
cation task for the boundary between two consecutive words. The
classes denote the presence or absence of a comma at the boundary.
We consider several sequence models to implement this classifica-
tion problem: the Hidden-Event Language Model (HELM) that was
quite successful for sentence segmentation [7], the factored Hidden
Event Language Model (fHELM) — an extension of the HELM that
can deal with several classes of features — and the Conditional Ran-
dom Fields (CRF) [8].

The HELM is simply a regular n-gram language model trained
on the sequence of words, with corresponding boundary class sym-
bols (C=comma or N=no-comma), as in the following example:

... however C the N president C a N great N man C decided N to
N sell N the N company ...

At decoding time a lattice is constructed with both hypotheses
for each boundary, and the highest probability path is used to out-
put comma predictions. More formally, the joint probability of the
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word and event (C and N) sequence is estimated through the condi-
tional probabilities of each word given their context. (Here, X =
X1...X, isused to represent words and Y = Y7 ...Y,, is used to
represent classification labels, where Y; € C, N fori =1,...n).

P(Y, X) ~ [[ POVGIXG, Yier, Xion, Yiea, Xic2) (1)

Regular back-off and smoothing rules can be used as for an n-
gram language model. The factored HELM (fHELM) is an exten-
sion of the factored Language Model (fLM) [9] that adds support
for hidden events. The observations used in the HELM can be ex-
tended to a set of factors (or features) to obtain a joint modeling
of the words, the hidden events, and the factors. The originality of
the fLM (and therefore of the fHELM) resides in the choice of the
backoff paths when individual n-grams are under-represented in the
training data. Intuitively, less reliable features should be dropped
before more frequently-observed features.

The third model that we consider is the Conditional Random
Fields [8] model. In this case, the conditional probability of se-
quence of labels given the observations is estimated through a log-
linear model for which parameters can be trained efficiently.

P(Y|X) ~ ﬁexp (ZZAifi(Y;17}/:f7Xt)> ()

Z(X)—Z€$p< Zkifi(ytl,Yt,Xt)>

where f;(+) are feature functions depending on the observations and
labels, and A; are the corresponding weights. While CRFs have been
shown to have performance advantages over language models, un-
like HELM or fHELM they have the disadvantage that they do not
tend to scale to large datasets. HELM also have the useful prop-
erty that they allow the integration of boundary-wise probabilities
P(Y;|X;). Such probabilities can also be generated from the hy-
potheses of a CRF using the forward-backward algorithm, allowing
one to combine the two types of models.

In the experiments section, we use the SRILM toolkit [10] for
running the HELM and fHELM, and the CRF++ ' toolkit for CRFs.

3. FEATURES

According to [6], commas in English can be classified into several
categories:

e Elements in a list: “a, b or ¢”.

e Sentence initial and final elements: “Here, it usually snows a
lot in winter, if | remember correctly”.

e Nonrestrictive phrases (phrases that can be removed)

e Appositives: “The president, a great man, ...”, “San Fran-

cisco, California”.

e Interrupters (parenthetical elements).

Quotations: “He was captured, said the officer”.

The authors characterized the uses of commas in the Wall Street
Journal corpus by means of 211 syntactic rules (parent — left con-
text {Cy, right context). In order to capture such patterns in the ASR
output, we trained a parser? on non-capitalized text with punctuation

Uhttp://crfpp.sourceforge.net/
2We use the Berkeley parser to generate parse trees, available at
http://nlp.cs.berkeley.edu
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removed. As illustrated in Figure 1, each inter-word boundary is an-
notated with the highest constituents, in the syntactic parse tree, end-
ing and beginning at that location, as well as with their parent. We
create additional patterns in which constituents can be substituted
by arbitrary constituents to obtain better coverage. For example, in
Figure 1, “PP—IN, NP” is relaxed to “*—IN, NP”, “PP—*, NP”,
“PP—IN, *” .... The syntactic patterns complement a set of features
designed for sentence segmentation but which can be applied to de-
tect any type of punctuation.
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Fig. 1. Using the parse tree, each inter-word boundary is charac-
terized by the highest constituents that begin or end at that location
and by their parent (circled constituents). For instance, the features
extracted for the boundary between “in” and “may” are: NP IN PP
NP_IN NP_PP IN_PP NP_IN_PP.

Different types of features are used to characterize word bound-
aries and to train comma models: lexical (W), part-of-speech tags
(T), syntactic (S) and prosodic (P) features. Apart from the syntac-
tic features which require parsing of sentences, all other features are
derived from the ICSI+ sentence segmentation system [11].

e Lexical: word bigrams across the boundary, words before and
after the boundary.

e Part-of-speech tags: bigram of tags across the boundary, tag
before and after the boundary. When used with lexical fea-
tures, joint features (word+tag) are generated.

e Prosodic: pause duration, normalized pitch and energy on
each side of the boundary and their difference across the
boundary, normalized vowel and rhyme duration before and
after the boundary.

While the HELM uses only lexical features, in our experiments
the fHELM is trained on both part-of-speech tags and words. Only
those two feature types are used in order to train models on a very
large text corpus. This allows us to run only a part-of-speech tagger’.
CRFs are trained on these features (for comparison purposes) and the
full set of features extracted from speech data, including syntactic
patterns.

3Part-of-speech tagger available at http://www-tsujii.is.s.u-tokyo.ac.jp/



System TDT4 Gigaword
HELM (W) 429 45.8
fHELM (W+T) 46.7 46.9
CRF (W+T) 48.3 n/a

Table 1. Comparison of HELM (words only), fHELM and CRF
(words and part-of-speech tags) on trained on TDT4 and Gigaword
data (F-measure).

4. EXPERIMENTS

The data set used for our experiments is a subset of the TDT4 En-
glish data.* Tt consists of 200 hours of close-captioned broadcast
news. We use one million words of this set for training, 83k words
as a development set, and 84k words as the test set. The prior proba-
bility for commas is 4.4% with an average of 0.85 commas per sen-
tence. The data is recognized using SRI’s English broadcast news
ASR system; the word error rate on this dataset is estimated to be
around 18%. It is important to note that in this work we use the
true sentence boundary locations, to remove the confounding effect
of sentence boundary errors on comma prediction. The punctuation-
annotated data was created by automatically aligning ASR output
with the reference text, and copying punctuation marks from the ref-
erence stream into the ASR stream. Commas aligned to a deleted
word are push on the previous word and when the alignment is am-
biguous (sequence of errors), commas are attached to the word that
minimize the alignment cost. Because this alignment is not very re-
liable when the word error rate is high, we decided to only consider
segments with a word error rate of less than 30%, effectively remov-
ing about 20% of the data (training and test).

A initial comparison we conduct is to compare the HELM, the
fHELM and CRFs using the same basic features across different cor-
pus sizes. The first corpus is the TDT4 data of about one million
words on which CRF, fHELM and HELM are trained. The second is
a subset of the English Gigaword corpus distributed by LDC, corre-
sponding roughly to 500 million words. This corpus is tagged with
part-of-speech tags, and is too large for CRF training. Results are
presented in Table 1 with F-measure values for the TDT4 test set.
One can observe that when a small amount of training data is avail-
able, there is a large improvement from HELM to fHELM and from
fHELM to CRF. However, when much more data is available, the
gap between HELM and fHELM reduces, while CRF cannot be ap-
plied. We expect that the more training data available, the better the
coverage of words in the HELM, and thus the better the results.

In the second experiment, CRFs are trained with a range fea-
ture subsets, either excluding or including the new syntactic features.
The results, depicted in Figure 2, show that the addition of syntactic
features is beneficial to all feature subsets. There are large improve-
ments when only one set is used (words, prosody or tags) and less
improvement when multiple features are used jointly with the syn-
tactic patterns. It is notable that the improvement from W+S (words
and syntax) to W+T+S (words, part-of-speech tags and syntax) is
relatively small, showing a potential redundancy between tags and
syntax when words are available. On the other hand, syntax still
adds 7% relative to the F-measure of W+T+P (all features). This is
surprising given that prosody alone did not perform well. The results
suggest that syntactic cases may help disambiguate prosodically-
marked commas from pauses and hesitations.

Our final experiment explores the combination of a CRF trained
with various subsets of features, with the HELM or the fHELM. Re-

4LDC publication LDC2005S11.
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Fig. 2. Impact of adding syntactic features broken down by feature
group (F-measure performance of CRF-based comma annotation on
ASR words). Among the feature groups: words (W), part-of-speech
tags (T) and prosodic features (P).

60
O HELM M fHELM

55 B HELM+S BIfHELM+S 7
o %
£ 4
2 50 g
o g
g 7
i 45 g
7
40 é

P T W TP WT_
Feature subset

Fig. 3. CRF combined with HELM (trained on words) and fHELM
(trained on words plus part-of-speech tags). “+S” variants are com-
bined with a CRF containing syntactic features.

sults for this experiment are detailed in Figure 3. For this experi-
ment, we used the models trained on Gigaword, combined with CRF
trained on TDT4 data on each subset of features. The merging of
HELM or fHELM with CRF always results in performance improve-
ments, and the weaker the CRF (that is, a CRF trained with smaller
subsets of features), the greater the relative improvement. The best
performance is achieved by a combination of CRF using all subsets
of features with the fHELM. Syntactic features appear useful when
added to each subset of features, implying a rather low redundancy
with the information covered by the language model. Another inter-
esting finding is that the fHELM is not consistently better than the
HELM, suggesting the limited benefit of using multiple factors as
the size of the training corpus gets larger.

5. DISCUSSION

Figure 4 shows some of the most highly-weighted features in a CRF
model trained on syntactic features only. The symbols in this fig-
ure are syntactic constituents according to a Penn Treebank nota-
tion (for example, S denotes a sentence, NP denotes a noun phrase).
An asterisk represents the constituent that stands at that place in the
parse tree, regardless of its identity. The first column represents rel-
evant features for the “comma” class; the the second column refers



to the “no comma” class. Note that the weights (\; in equation 2)
are jointly optimized with other features from the sequence, and are
therefore somewhat difficult to interpret as is. Also, here we only
represent the unigram classes (zero'"-order CRF) but weights are
also impacted by a bigram of classes (ex: a comma followed by a
non-comma).

Comma No-comma

parent—  left, right Ai parent— leftright \;
S— *,NP 0.44 *— CC* 092

S— RB,NP 0.41 NP— ** 0 0.88

*— NP,NP 0.39 *— DT*  0.70

S— NP,NP 0.31 PP— ** o 0.66

S— RB,* 0.29 VP— *E 065

S— NP,PP 0.29 * *NN 0.60

*— 1,1 0.28 *— IN*  0.60
VP— *,8Q 0.27 QP— ** 059
SBAR— RB,S 0.26 NP— DT*  0.59
S— *, PP 0.25 *— * NNS 0.56
VP— PP, VP 0.24 *— *VP 0.56
VP— VP * 0.22 | ADVP— *E - 0.56
VP— *,SBARQ 0.22 *— *RB 0.52
VP— MD, PP 0.22 SQ— ** 052
*— MD, PP 0.22 | WHNP— *EF 051
*—ADVP , NP 0.22 *—PRP$ * 048

S— NP,SBAR 0.22 * *CC 048

*—- RB,S 0.21 SINV— kE 048

*— RB,NP 0.20 *—~ VBZ* 047
ADJP— RB,RB 0.20 *— *NP  0.46

Fig. 4. Highly weighted features in the CRF model for both the
“comma” and “no-comma” classes.

The first column of this table shows that obvious patterns where
a comma is allowed are detected by the model. For instance,
“S—RB, NP” or “S—RB, *” place a comma after an adverb at
the beginning of a sentence. On the other hand, end-of-sentence
phrases separated by a comma are represented by patterns such as
“S—* NP” or “S—*, PP”. “*—]J, JJ” could be a list of adjectives
and “*— NP, NP” is likely to by part of an apposition. A study of
the second column revels that the model successfully learns that a
noun phrase, a verb phrase or a prepositional phrase are unlikely to
contain a comma (NP—* * VP—* *_ ) Similarly, commas are
hardly placed after coordinate conjunctions, determiners or prepo-
sitions (*— IN *, *— DT *, ...). Additionally, features such as
“NP—DT *” reinforce the weight of the examples cited previously.
The distribution of lambda will be greatly modified by the inclusion
of other features such as words as some boundary are going to be
much easier to classify.

We also conducted a study of the errors of the system by consid-
ering comma insertions and deletions for which the system outputs
high confidence scores. The error analysis suggests that a large quan-
tity of these examples are either labeling errors (the human annotator
missed a comma where it should have been), alignment errors (due
to ASR errors, the punctuation is transfered from the reference to
the wrong words) or non-mandatory commas (a comma is optional
at that location, but the annotator decided to not use it). As soon as
the confidence scores get lower, the system makes real errors due to
unseen conditions or limited features. Moreover, the study showed
that in some cases such as appositions and lists which are made of a
series of commas, the classifier would get one of the commas right
but miss the others. And indeed, we observed, for instance, that ap-
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positions are marked prosodically after the second comma, but the
first one is void of such a mark. Here, the system would clearly ben-
efit from a global decision in which the second comma becomes a
clue of the presence of the first one.

6. CONCLUSIONS

Restoring commas in automatic speech transcripts is important for
many natural language processing tasks that are trained on larger text
corpora. In this article, we have aimed at incorporating syntactic fea-
tures in a comma annotation system in order to capture long-range
patterns that lead to the insertion of commas. We observed a sig-
nificant gain of 7% on a broadcast news corpus, a rewarding gain.
Nevertheless, we see many existing challenges for future work on
this task. For instance, optional commas tend to confuse discrimina-
tive learning methods as training examples labeled as non-commas
are going to look like real commas. Another problem comes from
the fact that a pair of commas can enclose a long string of words
requiring a scope too large for usual sequence models. We envi-
sion that the next generation of punctuation systems will consider
the sentence as a whole instead of being limited to word boundaries.

7. REFERENCES

[1] B. Favre, R. Grishman, D. Hillard, H. Ji, D. Hakkani-Tiir, and
M. Ostendorf, “Punctuating Speech for Information Extrac-
tion,” Proc. of ICASSP, Las Vegas, NV, 2008.

[2] J. Makhoul, A. Baron, I. Bulyko, L. Nguyen, L. Ramshaw,
D. Stallard, R. Schwartz, and B. Xiang, “The Effects of Speech
Recognition and Punctuation on Information Extraction Per-
formance,” in Eurospeech, Lisboa, Portugal, 2005.

[3] J. Huang and G. Zweig, “Maximum entropy model for punctu-
ation annotation from speech,” in Proc. of ICSLP, Denver, CO,
2002.

[4] D. Hillard, Z. Huang, H. Ji, R. Grishman, D. Hakkani-Tiir,
M. Harper, M. Ostendorf, and W. Wang, “Impact of Auto-
matic Comma Prediction on POS/Name Tagging of Speech,”
Proc. of SLT, pp. 58-61, 2006.

[5] H. Christensen, Y. Gotoh, and S. Renals, “Punctuation Anno-
tation using Statistical Prosody Models,” in Proc. of Prosody in
Speech Recognition and Understanding, Red Bank, NJ, 2001.

[6] M. Bayraktar, B. Say, and V. Akman, “An Analysis of En-
glish Punctuation: The Special Case of Comma,” International
Journal of Corpus Linguistics, vol. 3, no. 1, pp. 33-57, 1998.

[7] A.Stolcke and E. Shriberg, “Automatic linguistic segmentation
of conversational speech,” in Proc. of ICSLP, Philadelphia, PA,
1996.

[8] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Condi-
tional random fields: Probabilistic models for segmenting and
labeling sequence data,” in Proc. of ICML, 2001, pp. 282-289.

[9] D. Vergyri, K. Kirchhoff, K. Duh, and A. Stolcke,
“Morphology-based language modeling for Arabic speech
recognition,” in Proc. of ICSLP, Jeju-Island, Korea, 2004.

[10] A. Stolcke, “SRILM—An extensible language modeling
toolkit,” in Proc. of ICSLP, Denver, CO, September 2002.

[11] M. Zimmermann, D. Hakkani-Tiir, J. Fung, N. Mirghafori,
L. Gottlieb, Y. Liu, and E. Shriberg, “The ICSI+ multi-lingual
sentence segmentation system,” in Proc. of Interspeech, Pitts-
burgh, PA, September 2006.



