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ABSTRACT 
 
Spectral and excitation features, commonly used in 
automatic emotion classification systems, parameterise 
different aspects of the speech signal. This paper groups 
these features as speech production cues, broad spectral 
measures and detailed spectral measures and looks at how 
they differ in their performance in both speaker dependent 
and speaker independent systems. The extent of speaker 
normalisation on these features is also considered. 
Combinations of different features are then compared in 
terms of classification accuracies. Evaluations were 
conducted on the LDC emotional speech corpus for a five-
class problem. Results indicate that MFCCs are very 
discriminative but suffer from speaker variability. Further, 
results suggest that the best front end for a speaker 
independent system is a combination of pitch, energy and 
formant information. 
 

Index Terms— Emotion Classification, Feature 
comparison, MFCC, Group Delay, Gaussian mixture 
models 
 

1. INTRODUCTION 
 

Salovey et al. [1] defined emotional intelligence as having 
four branches: perception of emotion, emotions facilitating 
thought, understanding emotions and managing emotions. 
The lack of this emotional intelligence is one of the most 
significant differences between speech based human-human 
interaction and human-machine interaction. The focus of 
this paper is on the first of the four branches of emotional 
intelligence; namely, a system that is able to automatically 
detect the emotional state of a person based on speech. 

This paper looks at an emotion classification system 
that does not utilize semantic or linguistic information. Such 
systems do not require any language models, and rely solely 
on prosodic and/or spectral features. Based on these 
features, classifiers such as neural networks [2], hidden 
Markov models (HMM) [3][4], Gaussian mixture models 
(GMM) [5] and support vector machines (SVM) [5] may be 
used to detect the emotional state of the speaker. A wide 
range of prosodic and spectral features have been proposed 
over the years for such systems [2-8]. Comparisons of the 

performances of commonly used features are available in 
[6-8]. The approach taken in these works are similar in that 
they adhere to a static modelling approach whereby frame 
level parameters such as pitch, energy, etc. are estimated 
and their statistics such as maximum, minimum, range, 
standard deviation, etc. are computed for each utterance to 
be used as features to a classification system. Consequently 
the comparisons are between different feature statistics (e.g. 
pitch range and standard deviation of energy) rather than 
speech parameters (e.g. pitch and energy). 

An alternative to the static modelling approach is the 
dynamic modelling one where the frame level parameters 
are used as features directly. Huang et al. [4] suggest that 
Gaussian mixture models, when used in a dynamic 
modelling framework are able to model statistics like mean, 
range and standard deviation and they need not be computed 
explicitly. The results included in [4] and preliminary work 
in our labs supports this line of reasoning. A dynamic 
modelling approach would then allow for a comparison 
between speech parameters as opposed to a comparison 
between statistics and is the approach taken in the work 
reported in this paper. 

Different features may have different levels of speaker 
dependent and emotion dependent characteristics. 
Consequently, they have differing performances in speaker 
dependent (trained on data from target speaker) and speaker 
independent (training and testing data come from different 
speakers) systems. Also, in some cases the information 
contained in a particular feature set could be complementary 
to the information in another set. This paper attempts to 
compare such features and determine if some or any of them 
are complementary. 
 

2. SPECTRAL AND EXCITATION FEATURES 
 

Features that have been reported to perform well in emotion 
classification tasks were selected to be compared to each 
other and are listed in this section. Since the system being 
studied does not make use of semantic or linguistic 
information, only acoustic, prosodic and spectral features 
were selected. Moreover, some popular features like speech 
rate do not fit into a dynamic modelling framework and 
hence were not considered. 
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Based on whether the features describe the speech 
spectrum or speech production parameters, they are 
classified as spectral features or speech production cues in 
this paper. The spectral features are further classified into 
broad and detailed spectral measures based on the level of 
spectral detail contained in them. While it has been shown 
that speaker variability in features significantly lowers the 
performance of a speaker independent system [9]; different 
features capture different amounts of the speaker’s 
characteristics and consequently not all of them are affected 
to the same degree. 

2.1. Speech Production Cues 

Pitch and energy – These are the two most commonly used 
features in emotion classification. Pitch characterises the 
glottal excitation rate and energy is an estimate of the 
intensity of glottal excitation. Together, they characterise 
the glottal excitation in the standard speech production 
model and are used as a feature set. In this work, the YIN 
estimator [9] was used to estimate pitch and energy was 
computed as the mean squared value of the signal within 
each frame. Both single dimensional features were 
computed within frames of 40 ms duration (minimum 
duration for reliable pitch estimate) obtained using a 
rectangular window, with consecutive frames overlapping 
by 30ms. 

Formants - The glottal excitation is spectrally shaped by 
the vocal tract in order to produce speech. The standard 
model of speech production models the vocal tract as an all 
pole filter whose resonances are termed formants. Of 
particular significance to voiced speech are the first three 
formants, which are characteristic of the sound produced. 
The first three formant frequencies and the corresponding 
formant energies, determined from the LPC magnitude 
spectrum, are concatenated to produce a 6 dimensional 
vector to characterise the vocal tract. 

2.2. Detailed Spectral Measures (DSM) 

Typical features in almost all speech processing characterise 
spectral information. Features that characterise spectral 
information in some detail are high dimensional features 
when compared to broad spectral measures. 

Mel frequency cepstral coefficients – the MFCCs, which 
characterise the magnitude spectrum, are commonly used in 
speech processing, particularly in speech recognition and 
speaker recognition systems. In all experiments described 
herein, 12 dimensional MFCC vectors were used. 

LPC Based Group Delay – The recently proposed LPC 
based group delay features are based on the all-pole filter 
model of speech production. While related to the spectral 
envelope of the signal, we have previously shown that the 
group delay features explicitly model formant bandwidths. 
This makes these features suitable for emotion classification 

and has been shown to improve the performance of speaker 
dependent systems [10]. Figure 1 shows the group delay for 
anger and neutral for the same phoneme uttered by two 
speakers and the difference between the two emotions can 
be seen. However, it can also be seen that group delay 
varies significantly between the two speakers. The first 10 
coefficients of the DCT of group delay  is used as the 
feature vector. 
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Fig. 1. Group delay for /a:/ for two emotions for two speakers. 

2.3. Broad Spectral Measures (BSM) 

It has been suggested that features characterising the vocal 
tract such as MFCCs and LPC based group delay are 
outperformed by vocal chord parameters such as pitch and 
energy in speaker independent emotion classification 
systems [4]. This is most likely due to the non-trivial 
differences in the vocal tract characterisations for different 
speakers. Thus, a feature vector that is derived from the 
speech spectrum, but excludes details that vary between 
different speakers will be useful for a speaker-independent 
emotion classifier. Features that characterise some aspect of 
the speech spectrum but do not describe it completely or in 
any detail are termed broad spectral measures in this work, 
and are typically low dimensional. 

Energy Slope and Zero Crossing Rate (SZ) – Energy 
slope (sometimes referred to as spectral balance) is 
calculated as the ratio of the energy in the low frequency 
band (0-1 kHz) to that in the high frequency band (2-11 
kHz). Zero crossing rate serves as a rough estimate of the 
dominant frequency present in the speech signal. Taken 
together they form a rough estimate of the spectral 
distribution of energy in the signal. In [4], they were 
proposed as additions to pitch and energy in a speaker 
independent system and are a 2 dimensional feature vector. 

EMD Based Weighted Frequency – The recently 
pioneered empirical mode decomposition (EMD) can be 
used to represent the speech signal as a sum of zero-mean 
AM-FM components, which then allow for the definition of 
a positive instantaneous frequency for each component, 
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based on the Hilbert transform. A Weighted frequency 
feature based on these instantaneous frequencies has been 
recently proposed as an alternative to the energy slope 
feature and is a 3 dimensional vector [12]. 
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Where am[n] and m[n] are the instantaneous amplitude and 
frequency of the mth AM-FM component. 

Spectral Centroid – One way to condense the information 
contained in the speech spectrum is to obtain a broad 
measure of the spectral magnitude distribution, such as 
spectral centroid. In this work, spectral centroid in each 
frame is single dimensional and was computed as follows: 
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Where, N is the frame size, X(k) is the DFT of the framed 
signal and Fs is the sampling rate. 
 

3. CLASSIFICATION SYSTEM 
 

3.1. Speaker Normalisation 

Previously, we used a modified feature warping technique 
as a means of speaker normalisation [9]. We apply it also to 
features in selected experiments reported in this paper. 
 
3.2. Back-End 

Sequential classifiers such as HMM-based classifiers have 
been advocated as being better suited for the task of 
emotion classification than other classifiers [4]. As an 
alternative, the feature vector can be modified to include 
temporal information and used with a non-sequential 
classifier such as probabilistic neural networks [10]. While 
the first approach was found to be suitable for a speaker-
independent system, the smaller data set available for 
training in the case of a speaker-dependent system means 
that probabilistic neural networks are able to generalise 
better in the latter case. 

For the purposes of this work however, where speaker-
independent and speaker-dependent systems are to be 
compared with each other, a consistent classification setup 
is necessary. The size of the training dataset for the speaker 
dependent system was too small to train HMMs while 
probabilistic neural networks required extremely large 
amounts of system resources when used in a speaker 
independent system. Thus, a GMM-based classifier that 
could be trained on both datasets and makes a decision on a 
frame-by-frame basis was chosen for the experiments. 
Preliminary informal experiments indicate that the 

performance of the GMM-based classifier is almost as good 
as the optimal classifiers. In order to classify a test 
utterance, the log likelihoods of all frames belonging to that 
utterance were added and a maximum likelihood decision 
was made based on the summed values. 

 
4. EXPERIMENTS 

 

For our investigation, we used the LDC Emotional Prosody 
Speech corpus, comprising speech from professional actors 
trying to express emotions while reading short phrases 
consisting of dates and numbers. There is therefore no 
semantic or contextual information available. The entire 
database consists of 7 actors expressing 15 emotions for 
around 10 utterances each. When recording the database, 
actors were instructed to repeat a phrase as many times as 
necessary until they were satisfied the emotion was 
expressed and then move onto the next phrase. Only the 
final repetition of each phrase was used in this experiment. 

Experiments for a five-emotion classification problem 
involving Neutral, Anger, Happiness, Sadness and Boredom 
were performed using a GMM based classifier, 
implemented in both speaker dependent and speaker 
independent configurations, using all features described in 
Section 2. All speaker dependent experiments were repeated 
7 times, using 60% of the phrases from each of the 7 
speakers as the training data set and the other 40% as the 
test data set, while the speaker independent experiments 
were repeated 7 times in a ‘leave-one-out’ manner, using 
data from each of the 7 speakers as the test set in turn and 
the data from the other 6 as the training set. In both cases, 
the accuracies reported are the means of the seven trials in 
each experiment. 

Table 1. Comparison of five-class emotion classifier accuracies 
using various individual features 

Classification Accuracy 
Spk Indep. 

 
Features Spk Dep. 

No Warp Warp 
Pitch + Energy (PE) 56.1 % 38.9 % 46.6 % 
Energy Slope + ZCR (SZ) 55.4 % 34.9 % 46.5 % 
Weighted Frequency (WF) 59.0 % 38.9 % 48.9 % 
Spectral Centroid (SC) 51.8 % 34.4 % 39.2 % 
MFCC 74.1 % 42.6 % 37.6 % 
Group Delay (GD) 67.6 % 37.3 % 37.8 % 
Formants (F) 51.1 % 34.9 % 42.6 % 

As can be seen from these accuracies, the best 
performing features for the speaker dependent and 
independent systems differ. While the pitch and energy 
perform reasonably consistently in both configurations, the 
performances of spectral features are more interesting. The 
detailed spectral measures, such as MFCCs and the LPC 
based group delay perform well in speaker dependent 
systems. However, they are not very useful in the speaker 
independent system even though the information contained 
in them is similar to that in the formants. This tends to 
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suggest that detailed spectral measures such as MFCCs and 
group delay, while being able to distinguish between 
emotions well, also characterise the speaker to a much 
larger extent than both the speech production cues and the 
broad spectral measures. 

Moreover, it can be seen that feature warping based 
speaker normalisation does not appear to improve the 
performance of group delay and in fact MFCCs perform 
better without warping. The broad spectral measures on the 
other hand do not perform very well when used alone. 
Hence, systems using combinations of excitation cues, 
broad spectral measures (BSM) and detailed spectral 
measures were compared and the accuracies are reported in 
Table 2. 

The grouping of MFCCs with broad spectral measures 
provides the most effective feature combinations for the 
speaker dependent system. However, when compared with 
the MFCC alone speaker dependent system, the 
improvement due to the broad spectral measures are very 
marginal. This suggests that rather than them providing 
additional information, the speech production cues seem not 
as effective as MFCCs, and can even reduce the accuracy of 
the emotion models when combined with MFCCs. 

Table 2. Five-class emotion classifier accuracies for various 
feature-pair combinations 

Classification Accuracy 
Spk Indep. 

Features 
Spk Dep. 

No Warp Warp 
PE + SZ 56.8 % 39.4 % 53.7 % 
PE + WF 64.7 % 39.2 % 53.2 % 
PE + SC 60.4 % 40.2 % 45.7 % 
PE + MFCC 69.8 % 40.5 % 50.0 % 
PE + GD 69.8 % 45.2 % 52.4 % 
PE + F 52.5 % 39.1 % 59.5 % 
MFCC + SZ 74.1 % 41.5 % 44.7 % 
MFCC + WF 74.8 % 45.8 % 42.6 % 
MFCC + SC 74.8 % 42.1 % 41.5 % 
PE + SZ + MFCC 69.8 % 45.5 % 50.8 % 
PE + SZ + GD 70.5 % 48.5 % 52.9 % 
PE + SZ + F 61.2 % 39.7 % 56.9 % 

 

Among the speaker independent systems, the best 
performing features are the speech production cues 
combining the pitch and energy with the first three 
formants. The accuracy of the system for the combined 
front-end is significantly greater than the accuracies of the 
systems with the pitch and energy or formant information 
on their own. This strongly suggests that these two features 
are complementary, which is not surprising considering that 
formants are determined by vocal tract resonances while the 
glottal excitation cues characterise the vocal chords. Front-
ends combining MFCCs with other features in Table 2 do 
not perform very well in the speaker independent case. The 
low overall recognition accuracies of all the front ends also 

indicate that these systems are not sufficient for any stand 
alone practical emotion recognition system. 
 

5. CONCLUSION 
 

This paper has compared features and feature pairs from 
three broad groups of feature types, for the purpose of 
emotion classification. The accuracies of the different 
features in a five-class emotion classification reported in 
this paper suggests that MFCCs are very discriminative but 
are also very characteristic of the speaker, and that they do 
not lend themselves well to speaker normalisation. Since 
most practical emotion classification systems would need to 
be speaker independent, MFCCs may not be the front-end 
of choice, unlike in speech recognition and speaker 
recognition systems. The comparisons also suggest that the 
optimum front-end for a speaker independent emotion 
recognition system is one that characterises both the vocal 
tract and the vocal chords consisting of the first three 
formant frequencies and energies along with excitation 
cues. 
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