
LEARNING TO MAXIMIZE SIGNAL-TO-NOISE RATIO FOR REVERBERANT SPEECH
SEGREGATION

Zhaozhang Jin and DeLiang Wang

Department of Computer Science and Engineering
& Center for Cognitive Science

The Ohio State University
Columbus, OH 43210-1277, USA
{jinzh, dwang}@cse.ohio-state.edu

ABSTRACT

Monaural speech segregation in reverberant environments is a
very difficult problem. We develop a supervised learning approach
by proposing an objective function that directly relates to the compu-
tational goal of maximizing signal-to-noise ratio. The model trained
using this new objective function yields significantly better results
for time-frequency unit labeling. In our segregation system, a seg-
mentation and grouping framework is utilized to form reliable seg-
ments under reverberant conditions and organize them into streams.
Systematic evaluations show very promising results.

Index Terms— Computational auditory scene analysis, monau-
ral speech segregation, objective function, room reverberation, su-
pervised learning.

1. INTRODUCTION

Room reverberation happens in everyday listening and it creates an
additional challenge to speech segregation. Most current studies ap-
proach the problem using localization cues [1, 2] from more than
one microphone, which is less desirable than a monaural solution in
many applications [3], e.g., hearing aid design and noise removal for
automatic speech recognition. This study is concerned with monau-
ral segregation of reverberant voiced speech.

Pitch, or harmonic structure, has long been studied as a promi-
nent characteristic of speech signals and offers a major cue for a
listener to separate target speech from other sounds [4, 5]. The pitch
cue has been applied successfully in monaural CASA algorithms un-
der anechoic conditions (e.g., in [6]). However, the harmonic struc-
ture is distorted by reverberation as reflections of each harmonic
combine with the direct sound. As a result, the performance of pitch-
based CASA systems suffers in room reverberation [7]. To tackle
this problem, the study in [8] estimates an inverse filter of the room
impulse response to counteract the smearing effect of reverberation
on speech spectrum. However, the inverse filtering method is very
sensitive to even small changes in room configuration [9, 10].

In [10], we proposed a supervised learning approach to achieve
robustness against reverberation effects in the computational audi-
tory scene analysis (CASA) framework [7]. A multilayer perceptron
(MLP) is trained for each channel of a gammatone filterbank to es-
timate a harmonic-related grouping cue within each time-frequency
(T-F) unit from a set of pitch-based auditory features. A grouping
cue encodes the posterior probability of a T-F unit being target dom-
inant given observed features. This approach is shown to be more
robust than the inverse filtering method.

In this paper, we propose a segregation system by employing
more robust low-level grouping cues and improving the means by
which the cues are utilized. By analyzing the goal of maximizing
SNR in segregation, we formulate an objective function for MLP
training which takes into account of unit-wise errors in a generalized
form of mean squared error (MSE). Since it is a continuous func-
tion of model parameters, an error backpropagation technique can
be devised in order to maximize SNR. In addition, we employ a new
segmentation method to more reliably compute auditory segments in
reverberant environments. Specifically, we use cross-channel corre-
lation and temporal continuity for segmentation in the low-frequency
range because they are observed to be relatively robust to reverber-
ation. In the high-frequency range, we apply onset-offset detec-
tion [11] to capture intensity variation and form segments by match-
ing pairs of detected onsets and offsets. It is expected that onset cues
are robust to room reverberation in the light of the precedence effect,
which refers to the perceptual importance of a direct sound or signal
onset. The grouping stage then organizes segments into streams by
combining grouping cues.

The paper is organized as follows. In the next section, we derive
the new objective function with the goal of maximizing SNR perfor-
mance. Section 3 describes the overall system. In Section 4, we first
show the effect of the new objective function in contrast to conven-
tional MSE minimization, and then evaluate our segregation system.
We conclude the paper in Section 5.

2. RELATING OBJECTIVE FUNCTION TO SNR

T-F unit labeling plays an important role in a CASA based segre-
gation system. Reliable unit labeling can be obtained through su-
pervised learning approaches [12]. For frequency channel c and
time frame m, a grouping cue Cg(c, m), later used to label T-F unit
ucm, encodes the posterior probability of ucm being target domi-
nant given auditory features xcm. The desired value of the grouping
cue Cg(c, m) is defined to be 1 if ucm is dominated by the target
stream and 0 otherwise, consistent with the notion of the ideal bi-
nary mask [13] which labels a T-F unit as target if and only if target
energy is greater than interference energy within that unit. Thus, the
ideal binary mask provides the desired values of Cg(c, m).

We use an MLP to learn the grouping cue Cg(c, m) from the
pitch-based features xcm. Training usually minimizes an objective
function (i.e., error function) defined as the square distance between
desired and actual outputs. Our previous study [10] uses a conven-
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tional MSE objective function, defined as

Jc =
1

M

∑
m

(dc(m)− yc(m))2 (1)

where dc(m) and yc(m) are desired (binary) and actual outputs, m
frame index, M the total number of frames, and c channel index.
The model using the above objective function performs reasonably
well [10]. However Jc treats all T-F units equally. Such treatment
may not be optimal—a T-F unit with higher energy contributes more
to the overall SNR than a unit with lower energy. In other words,
minimizing Jc does not necessarily lead best SNR performance.

In order to derive an objective function that directly relates to the
goal of maximizing SNR, we start by analyzing the SNR definition.
Since the computational goal of our proposed segregation system is
to identify T-F regions that are target dominant, we use the same
SNR measure in [6], which regards the resynthesized signal from
the ideal binary mask as ground truth

SNR = 10 log10

∑
t s2

I(t)∑
t (sI(t)− sE(t))2

. (2)

Here sI(t) and sE(t) are signals resynthesized from the ideal binary
mask and an estimated mask, respectively. Consider the SNR in a
single channel as training is independently conducted within indi-
vidual channels. To maximize the overall SNR we maximize SNR
in each channel. Rewrite (2) for a single channel as

SNRc = 10 log10

∑
m dc(m) · Ec(m)∑

m(dc(m)− Yc(m))2 · Ec(m)
(3)

where Ec(m) represents the mixture energy within ucm, calculated
as the sum of squares of the unit response. Yc(m) is an actual binary
label, binarized from yc(m). From (3), it is intuitively clear that
minimizing the denominator maximizes SNRc. Therefore, we define
the new objective function J ′

c as

J ′
c =

∑
m

(dc(m)− yc(m))2 · Ec(m)
/ ∑

m

Ec(m). (4)

Note that the function J ′
c is modified from the denominator in (3)

in order to make it differentiable, needed for applying gradient de-
scent learning. The denominator in (4) is added for the purpose of
normalization (cf. (1)). It is worth mentioning that J ′

c is a general-
ized form of MSE, with each squared error weighted by normalized
energy within the corresponding T-F unit.

3. SYSTEM DESCRIPTION

The input signal is decomposed into a T-F representation using a
gammatone filterbank [7]. In each T-F unit, a set of pitch-based fea-
tures are extracted and the grouping cue for unit labeling is estimated
using a trained MLP model. In segmentation and grouping stage, T-F
units are merged into segments based on cross-channel correlation in
low frequency regions and onset/offset analysis in high frequency re-
gions. Target and background streams are then generated by group-
ing segments from labeled units and refined in the final segregation
step. A binary mask is thus estimated and the reverberant target is
segregated from the original mixture by retaining those T-F regions
labeled as 1 in the mask and discarding the rest.

3.1. Feature Extraction

To extract pitch-based features, an input mixture is passed through
a 128-channel gammatone filterbank whose frequencies are quasi-
logarithmically spaced from 50 Hz to 8 kHz. The response of a filter
channel is further transduced by the Meddis model of auditory nerve
transduction, denoted by h(c, t). Then, the normalized correlogram
A(c, m, τ) is computed using a window of 20 ms with 10 ms over-
lapping. c is channel index, m is frame index and τ is time lag.
For ucm, a 6-dimensional feature vector is extracted in similar form
in [10, 12]:

xcm =
{
A(c, m, τm),

[
f̄(c, m)τm

]
,
∣∣∣f̄(c, m)τm −

[
f̄(c, m)τm

]∣∣∣,
AE(c, m, τm),

[
f̄E(c, m)τm

]
,
∣∣∣f̄E(c, m)τm −

[
f̄E(c, m)τm

]∣∣∣}.

(5)
The first three features are derived from h(c, t), suitable for detect-
ing resolved harmonics in low-frequency channels. Given the pitch
period τm at frame m, A(c, m, τm) is a quantitative measure of how
the observed signal in ucm is consistent with τm. The average in-
stantaneous frequency f̄(c, m) is estimated from the zero-crossing
rate of A(c, m, τ). When multiplying f̄(c, m) with τm, the product
provides an alternative way of periodicity comparison and supple-
ments the autocorrelation measure in the feature set. So, the next
two features are extracted out of this product: the second feature,
the nearest integer [·] to the product, indicates a harmonic number,
and the third feature, the distance | · | between the product and the
nearest integer, represents the deviation between the two periods.
To detect unresolved harmonics, the last three features are based on
the envelope of the hair cell output hE(c, t) and the corresponding
normalized correlogram AE(c, m, τ). Here, the purpose is to ex-
tract amplitude modulation (AM) for high-frequency channels and
hE(c, t) better reveals the periodicities of these harmonics. To ex-
tract AM, we perform band-pass filtering with the passband from
50 to 550 Hz, which corresponds to the plausible pitch range of the
target speech. When extracting these features, the pitch period τm

needs to be specified. To remove the influence of pitch errors on
the segregation system, we obtain a priori pitch contours from the
premixed reverberant target speech using Praat [14].

3.2. MLP Training and Labeling

In order to reliably detect both resolved and unresolved harmonics,
we train one MLP for each channel. Each MLP has the same network
topology with 6 input nodes, 20 hidden nodes and 1 output node. The
number of hidden nodes is chosen based on ten-fold cross-validation.
The transfer function of the hidden and output layers are both hyper-
bolic tangent sigmoid. The backpropagation algorithm is adapted to
learn MLP parameters. In theory, each of the weights in (4) acts as a
constant factor in the partial derivative of J ′

c. So the delta rule can be
easily rewritten. It should be noted that the normalization term in (4)
is necessary to ensure the convergence of the modified backpropaga-
tion algorithm [15]. During training, we use J ′

c in conjunction with
a generalized Levenberg-Marquardt backpropagation algorithm [16]
which achieves fast convergence by avoiding the computation of the
Hessian Matrix.

The trained MLP estimates the posterior probability directly.
Thus, a T-F unit ucm is labeled as 1 if its posterior probability of
being target dominant (Cg(c, m)) is greater than the posterior prob-
ability of interference dominant (1-Cg(c, m)). That is,

Cg(c, m) > 1/2. (6)
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3.3. Segmentation and Grouping

To improve segmentation in reverberant speech, we apply two dif-
ferent strategies in different frequency regions. Specifically, in low
frequency (below 800 Hz) we merge T-F units into segments based
on cross-channel correlation and temporal continuity. Since high-
frequency channels are more susceptible to room reverberation,
segmentation using cross-channel correlation based on hE(c, t) is
not effective. Signal onsets, on the other hand, are largely unaltered
by room reverberation because the direct sound arrives earlier than
its echoes. Therefore, we propose that high-frequency regions be
segmented using onset and offset detection [11]. This method first
smooths signal intensity over time in individual frequency chan-
nels to reduce insignificant fluctuations and then over frequency
to enhance synchronized onsets and offsets. It then detects onsets
and offsets from smoothed intensity in each channel. Segments
are formed by matching pairs of onset and offset fronts, which
are the vertical contours connecting onset and offset candidates
across frequency. In order to achieve a compromise between over-
and under-segmentation, a multiscale integration is applied from a
coarse scale to a fine scale. Along the scale change, new segments
are created and existing segments are better localized. Finally, the
segments obtained from different frequency regions are combined to
form a complete segmentation.

With unit labels obtained in Section 3.2 together with T-F seg-
ments, we group each segment into the target stream if the energy
corresponding to its T-F units with target labels (1s) dominates, i.e.,
greater than the energy of the T-F units with non-target labels (0s).
Finally, to group more units into the target stream, we expand each
segment in the target stream by iteratively recruiting its neighboring
units that are labeled as target and do not belong to any segment.
Consequently, a binary mask is formed and the segregated target
speech can be resynthesized for performance evaluation [7].

4. RESULTS

To simulate typical room acoustics, we use the image model which is
commonly applied for efficient simulation of the acoustic properties
of enclosures [17]. In such a model, a pair of physical locations, cor-
responding to the source and the microphone, decide RIR in a fixed
room. In order to simulate both convolutive and additive distortions,
we randomly specify the locations of the target and one interfering
source and one more location for the microphone. More specifically,
we start with anechoic target speech s(t) and anechoic interference
n(t). We then generate a simulated room and randomly create a set,
{rT ,rI ,rM}, representing locations of the target, the interference
and the microphone inside the room, respectively. From these lo-
cations, two RIR’s—hT (t) and hI(t)—are calculated by the image
model. Consequently, a reverberant mixture r(t) is constructed by

r(t) = hT (t) ∗ s(t) + α · hI(t) ∗ n(t) (7)

where “*” denotes convolution. We use α as a coefficient in order to
set mixture SNR to 0 dB. The goal of our system is to segregate the
reverberant target hT (t) ∗ s(t) from the mixture r(t).

In order to systematically evaluate the proposed system under
different reverberant conditions, we simulate six acoustic rooms
with different sizes and their reverberation times (T60’s) range from
0.1 to 0.6 s in steps of 0.1 s. In each room, we randomly create
three sets of locations as mentioned above, resulting in three sets of
{hT (t), hI(t)} and three sets of reverberant mixtures created by (7).
Our evaluation uses Cooke’s corpus [18], which contains 100 noisy
utterances constructed by mixing 10 anechoic voiced utterances

(target speech) and 10 different types of interference. We generate a
total of 1,900 mixtures, with the original 100 mixtures in anechoic
and 6× 3× 100 mixtures in reverberant conditions.

4.1. MLP Labeling

Given that the computational objective of our segregation system is
to identify T-F regions that are target dominant, we adopt the SNR
measure defined in (2) to assess the segregation performance using
the resynthesized speech from the ideal binary mask as the ground
truth. SNR gain is defined as the improvement over the initial SNR
before segregation.

To assess the advantage of J ′ over J in MLP learning, we segre-
gate target speech using a binary mask formed by unit labeling only
(i.e., without segmentation and grouping) and evaluate segregation
performance in terms of SNR gain. MLP is trained on one set of 100
reverberant mixtures in the room whose T60 = 0.3 s, which is the
same training set used in [10]. Note that we only trained on one of
the three random configurations in one room and test on all config-
urations under all reverberant conditions. Both J and J ′ objective
functions are used in training and their performances are compared
in Table 1. The trained MLP using J ′ performs uniformly better than
the one using J , providing more than 1 dB gain on average. Such
an improvement is significant for speech segregation systems and
is purely brought about by training itself with almost no additional
computational cost.

Table 1. Comparison of SNR gain in dB between MSE and general-
ized MSE (J and J ′) in MLP training.

Room Cond. – T60(s)

MLP’s 0.0 0.1 0.2 0.3 0.4 0.5 0.6

J 10.1 10.1 9.5 9.5 8.9 9.1 8.0

J ′ 11.6 11.6 10.6 10.9 9.9 10.0 8.4

It is also observed that the difference is greater where training
and test are done in the same room (shown in bold numbers). When
training and test conditions do not match, both MLPs have perfor-
mance degradation due to feature variations with changing acous-
tic environments. This introduces a generalization problem. Next,
we evaluate our proposed system in three different scenarios which
place different levels of demand on generalization.

4.2. Segregation Evaluation

When reverberation time is known, we train on one set of 100 rever-
berant mixtures and test the resulting model in the same room. The
dotted line in Fig. 1 represents this case. The performance curve
depicts the SNR gain of seven separate systems, each trained at a
different T60. The observed performance drop with increasing re-
verberation likely reflects the nature of the ascending difficulty of
segregation. In other words, segregation in highly reverberant con-
ditions is probably a harder task than in low reverberant conditions.

With unknown T60, we train on all different T60’s. Specifically,
we form a training corpus with a total of 700 reverberant mixtures by
using the first set of mixtures in each room together with anechoic
mixtures. The pentagram line in Fig. 1 shows the system perfor-
mance in this case. This way of training gives a single system re-
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Fig. 1. Voiced speech segregation performance. SNR gain is mea-
sured under room conditions with T60 ranging from 0 to 0.6 s. The
dotted line, the pentagram line and the circle line represent three
cases discussed in the text. The performance of the previous sys-
tem [10] is also presented for comparison.

gardless of reverberant conditions and the performance is only about
0.5 dB worse on average compared to the known room case.

With unknown T60, we can also train on a single T60. If we
assume T60 is more likely above 0.3 s which is typical of rooms
encountered in daily life [19], we can train at T60 = 0.6 s, the most
reverberant condition, because generalization to less reverberation
may be better than the other way around. The rationale here is to
obtain the best possible classifier under the least favorable condition,
often referred to as a MINIMAX solution [20]. The SNR gain of this
case is the circle line in Fig. 1. Some degradation is observed, but
the system yields relatively good performance at high T60’s.

Finally, we compare the above three curves using the proposed
system with the one using [10]. Different from the comparison made
in Section 4.1, this is on the overall segregation performance. As
can be seen, the proposed system achieves significantly higher SNR
gains across all different T60’s than the previous system. This margin
reflects the contributions of a more proper training schema and a
more effective segmentation and grouping strategy.

5. CONCLUSIONS

This paper develops a supervised learning approach to reverberant
speech segregation where a generalized MSE objective function is
proposed for MLP training, which directly relates to the goal of max-
imizing SNR. A multiscale onset and offset analysis is employed for
reliable segmentation in high-frequency region. The proposed sys-
tem is evaluated in three different training scenarios and shows a
significant SNR improvement over a previous approach. In the cur-
rent study, we use a priori pitch, calculated from reverberant target
speech before mixing, in feature extraction. Although our prelimi-
nary evaluation suggests that system performance is not very sensi-
tive to errors in pitch detection, robust pitch estimation in noisy and
reverberant conditions is an important topic for future research.
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