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ABSTRACT

We present an algorithm to decompose speech into transient

and non-transient components. Our algorithm, the joint time-

frequency segmentation algorithm, uses the wavelet packet

coefficients of the speech signal and represents them as tiles

of a time-frequency representation adapted to the characteris-

tics of the signal itself. Any wavelet packet coefficient, whose

tiling height is larger than or equal to the tiling width is char-

acterized as a transient coefficient and vice versa for the non-

transient coefficient. The transient component is selectively

amplified and recombined with the original speech to gener-

ate the modified speech with energy adjusted to be equal to the

energy of the original speech. The psychoacoustic tests per-

formed with fourteen human listeners show that the speech

modification significantly improves speech intelligibility in

background noise, i.e., for 10% absolute at 0dB to 31% ab-

solute at −30dB.

Index Terms— Speech enhancement, transient compo-

nent, speech intelligibility, wavelet packet transform

1. INTRODUCTION

During the past decades, there has been a vast increase in re-

search focused on improving the intelligibility of speech pre-

sented in background noise, which can be divided into two

categories. Speech enhancement of the first category aims

to increase the intelligibility of speech already corrupted by

noise by minimizing its effect as much as possible, e.g., ac-

tive noise cancelation and spectral subtraction [1]. These ap-

proaches have been applied to noisy speech arrived at the lis-

tener, where the properties of noise, e.g., its spectrum are as-

sumed to be available [1]. Although these approaches show

impressive improvements, they may not work well under the

conditions, where the noise is not known [2]. Speech en-

hancement of the second category are based on clean speech

assumed to be available for processing before played back to a

listener located in a noisy environment [2, 3]. The approaches

are focused on the amplification of speech features shown to

be important to speech perception, i.e., the transient compo-

nents, without requiring the knowledge of background noise

characteristics [2, 3].

Yoo et al. [2] developed an approach, where the original

speech is first high-pass filtered at 700 Hz. Three time-

varying bandpass filters are applied to capture the three

strongest formants of high-pass filtered speech referred to as

the quasi-steady-state (QSS) component. The QSS compo-

nent is subtracted from the high-pass filtered speech resulting

in the transient component. The transient component is selec-

tively amplified and recombined with the original speech to

generate the modified speech with the energy adjusted to be

equal to the energy of the original speech. The intelligibility

of the modified speech in background noise is compared to

that of the original speech. The modified speech significantly

improves speech intelligibility at low signal-to-noise ratios

(SNRs), i.e., up to 32% at −25dB. However, the resulting

transient component appears to retain a significant amount of

formant energy during what would appear to be QSS regions

of the speech and cannot capture the transient component

frequencies below 700 Hz [3].

The approach of Tantibundhit et al. [3] decomposes

speech into three components, i.e., tonal, transient, and resid-

ual components, respectively. The modified discrete cosine

transform (MDCT) is used to capture constant or slowly vary-

ing frequency information in speech referred to as the tonal

component. The wavelet transform is used to capture abrupt

changes in speech referred to as the transient component.

The residual component is expected to have small energy

with a flat spectrum. The transient component is used to

enhance speech intelligibility in background noise as done in

[2]. The psychoacoustic test results have shown that the tran-

sient component significantly improves speech perception in

background noise at low SNR levels (up to 18% at −25dB).

Although, this approach decomposes the transient compo-

nent more effectively than [2], i.e., removing vowel formants

more effectively and emphasizing abrupt changes in time-

frequency, the transient component suffered from pre-echo

distortion artifacts of the MDCT [4] in tonal estimation. This

may explain the lower improvements of speech intelligibility

compared with the improvements by Yoo et al. [2].

Therefore, in this paper, we develop another approach

to capture the transient component in speech signals more

effectively. Specifically, first, we decompose the transient

component directly from the original speech as in [3]. To
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avoid pre-echo distortion artifacts of the MDCT in [3], we

use the wavelet packet transform. Second, we use a multires-

olution algorithm [5], where both time and frequency tilings

are adapted directly to the characteristics of the speech sig-

nal itself instead of using fixed time-frequency tilings of the

MDCT or the wavelet transform as in [3]. We believe that

the multiresolution approach provides a more effective de-

composition of the transient component of the speech signal.

Our previous algorithm [5] allows to decompose the speech

signal into two different components, i.e., the transient and

non-transient components, respectively. The wavelet packet

coefficients of the speech signal are represented as tiles of the

time-frequency representation adapted both in time and fre-

quency. The transient component is obtained using all of the

wavelet packet coefficients, whose tiling heights are greater

than or equal to the tiling widths, and vice versa for the non-

transient component. In the following, details of the algo-

rithm, examples of speech decomposition results, and the new

method for the generation of modified speech are described

in Section 2. The experimental setup (a modified rhyme test)

used to evaluate the intelligibility of the modified speech and

the original speech is described in Section 3. The test results

are presented in Section 4. Implications of the results and

future work are discussed in Section 5.

2. SPEECH DECOMPOSITION AND
MODIFICATION

2.1. Time-Frequency Representation

The original signal, xorig(t), sampled at 11.025 kHz, is trans-

formed using the wavelet packet transform [6] limited to

the coarsest level L composed of 256 coefficients (23.2

msec). The Daubechies-16 (Db16) wavelet is chosen as a

mother wavelet because it gives a better estimation of the

transient component across 300 monosyllabic consonant-

vowel-consonant (CVC) rhyming words [7].

From the finest level (level 1) to the coarsest level (level

L), the wavelet packet coefficients in each bin are divided into

blocks of coefficients, each of which is composed of 256 coef-

ficients. Then, all of the blocks of coefficients are windowed

by the Hanning window based on the idea of Learned [8]. In

the classification process, the use of all wavelet packet co-

efficients in the bin may lead to miss strong time-dependent

features such as the transient information. Hence, it may be

beneficial to calculate a windowed energy [8]. The window

size of 128 coefficients (11.6 msec) with 50% overlap is cho-

sen resulting in a half-window at the beginning and at the end

of the block and three full windows, respectively. The average

energy of each block of windowed coefficients is calculated

resulting in five average energies in each block. Finally, the

entropy of each block is calculated based on these average

energies and is referred to as a cost of the coefficient block.

The next step is to evaluate all of the possible combina-

0
.
1
6
0
3

0
.
1
5
8
2

3
.
7
5
e
-
1
0

0
.
2
7
4
9

0
.
1
5
6
2

0
.
1
5
7
0

0
.
1
5
9
6

0
.
1
6
4
0

0
.
1
5
8
3

0
.
1
5
6
2

3
.
8
3
e
-
1
0

0
.
2
7
1
9

0
.
0
0
2
1

0
.
2
7
6
8

3
.
9
0
e
-
4

0
.
2
7
0
3 0.4607

0.0010

6.81e-5

7.32e-10

0.4598

0.0015

0.0014

0.0021

0.7201

0.0800

0.0013

0.0012

5.84e-4

7.56e-4

7.74e-4

0.0010

0
.
2
7
4
9

0
.
2
7
1
9

0
.
2
7
8
9

0
.
2
7
0
7

7
.
5
7
e
-
1
0

0
.
0
0
2
5

0.4617 0.4613

0.8001

0.0025

0.0013

0.0018

0.4617 0.4638

0.8026

0.0025

3
.
7
5
e
-
1
0

3
.
8
3
e
-
1
0

0
.
0
0
2
1

3
.
9
0
e
-
4

0.0010 0.0015

0.7201

0.0800

1 2 3 4

Level:

Stage:

1

2

3

4

Fig. 1. Graphical representation of joint time-frequency seg-

mentation for a 2048-sample synthetic signal composed of a

high frequency (5 kHz) sinusoid and a single impulse.

tions of time-frequency tilings in every level (level 1 to level

L) and find the combinations of time-frequency tilings that

achieve the minimum cost. This can be achieved by per-

forming the modified forward and modified backward algo-

rithms explained in our previous work [5]. Figure 1 graphi-

cally shows how our algorithm works for a 2,048-sample syn-

thetic signal composed of a high frequency (5 kHz) sinusoid

and a single impulse located at the 1,345 sample. The tilings

are expected to be split in frequency, where the 5 kHz sinu-

soid is located and expected to be split in time, where the

single impulse is located. The number in each block of Fig. 1

represents the cost of this block of coefficients.

Starting from the first stage, and moving from level 1

to level L, the sum of the cost of two adjacent blocks in a

considered level and the sum of the corresponding two trans-

formed blocks (low-frequency and high-frequency) at the

coarser level are compared. If the sum of the cost of two

blocks in a considered level is less than or equal to the sum of

the cost of the corresponding two transformed blocks, a time

split is performed; otherwise, a frequency split is performed.

The resulting time-frequency splits and the winning costs are

put in the second stage. At this stage, the number of levels is

reduced by one to L− 1. The same approach is applied in the

next stage with the number of levels reduced by one from the

previous stage until reaching the last stage (stage L). At this

stage, there is only one level left resulting in time-frequency

tilings with a minimal cost, where the tilings are adapted both

in time and in frequency to the characteristics of the analyzed

signal itself.
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Fig. 2. Speech decomposition of “bat”.

2.2. Transient Estimation

After the optimal time-frequency tiling has been achieved,

the next step is to derive the transient component from the

resulting tiling. All of the blocks of coefficients whose tiling

height is more than the tiling width are characterized as tran-

sient tiles and vice versa for the non-transient tiles. All of

the wavelet packet coefficients in the transient tiles, referred

to as the significant wavelet packet coefficients, are retained

but those in the non-transient tiles, referred to as the non-

significant wavelet packet coefficients, are set to zero based

on the idea of transform coding [3]. Then, the transient com-

ponent, xtran(t), is estimated by the inverse wavelet packet

transform of those significant wavelet packet coefficients.

The non-transient component is calculated by subtraction of

the transient component from the original speech signal as

xnont(t) = xorig(t) − xtran(t).

2.3. Speech Decomposition Results

Figure 2 illustrates speech decomposition results for the

mono-syllablic CVC word “bat”, spoken by a male speaker.

This word, phonetically transcribed as /bæt/, represents rela-

tively simple distinctions between transient and non-transient

components. Specifically, consonants, transitions from con-

sonant to vowel, and transitions at the end of vowel are

expected to be included in the transient component. Constant

formant frequency information in vowels is expected to be

included in the non-transient component. The spectrogram of

the word is illustrated in Fig. 2a.

The transient component, illustrated in Fig. 2b, includes

3.8 % of the energy of the speech signal. It includes the re-

lease of the plosive /b/ (arrow A), the transition from /b/ to

vowel /æ/ (arrow B) and the transition at the end of vowel /æ/

(arrow C), and most of the release of the plosive /t/ (arrow D).

It also includes the aspiration noise of /t/ (arrow E) visible as a

noise pattern in high frequency regions. The remaining non-

transient component, illustrated in the bottom of the figure,

includes most of the energy (96.2 %) of the speech signal. It

predominantly includes the vowel /æ/ as expected.

2.4. Modified Speech to Improve Speech Intelligibility

The transient component is used to improve speech intelli-

gibility, i.e., the transient component is selectively amplified

and recombined with the original speech, with the total en-

ergy adjusted to be equal to the energy of the original signal

based on the idea of [2, 3]. The transient amplification factor

of 12 is chosen based on informal listening tests, which is the

same factor as used in [2, 3]. A too small amplification factor

results only in a small improvement of speech intelligibility

while a large value results in a too strong emphasis of conso-

nants and transitions in speech, leading to unnatural sounding

speech and an implicit attenuation of the vowel sounds.

3. EXPERIMENTAL SET UP: MODIFIED RHYME
TEST PROTOCOL

The objective of this experiment is to investigate whether the

amplification of the transient component can improve the in-

telligibility of speech in background noise. This test protocol

is a modified version of the word monitoring task of Mack-

ersie et al. [9] using 300 monosyllabic CVC rhyming words

proposed by House et al. [7].

The test protocol was performed on fourteen volunteer

subjects with negative otologic histories and having at least

one ear of hearing sensitivity of 15dB hearing level (HL) or

better by conventional audiometry (250–8 kHz). Fifty sets

of rhyming monosyllabic CVC words (6 words per set) were

recorded by a male speaker as used in [2, 3]. Among them,

25 sets differ in their initial consonants and 25 sets differ in

their final consonants. In each trial, subjects heard up to six

acoustic stimuli corrupted by one level of speech-weighted

background noise chosen randomly from six signal-to-noise

ratio (SNR) levels (0, −6, −12, −18, −24, and −30dB). The

target word appears as text on the computer display and re-

mains visible until termination of the trial.

Subjects have to identify which stimulus is the target

word. Subjects hear each stimulus only once and have to

press the “SUBMIT” button as soon as they have recognized

a stimulus as the target word. Then, the trial is terminated and

the next trial is presented. If they think that the stimulus just

heard is not the target word, they have to press the “NEXT”

button to hear the next stimulus. The whole experiment is

composed of one training session and three test sessions.

Each test session is composed of one hundred trials. In this

paper, we present first results of the experiment, i.e., the anal-

ysis of 75 trials of the original and 75 trials of the modified

speech.
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SNR Mean difference SD 95% CI

−30dB 31.18 19.26 20.06 to 42.30

−24dB 23.40 10.96 17.07 to 29.78

−18dB 26.69 9.69 21.10 to 32.29

−12dB 17.67 15.40 8.78 to 26.57

−6dB 0.14 13.64 −7.74 to 8.01

0dB 10.35 12.42 3.18 to 17.52

Table 1. Differences (enhanced speech – original speech) of

means, standard deviations (SDs), 95% confidence intervals

(CIs) of word recognition scores.
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Fig. 3. Average percentage correct responses of original

(dashed line) and modified speech (solid line).

4. PSYCHOACOUSTIC TEST RESULTS

The average percentage correct responses at each SNR level

are calculated by the subjects’ correct responses divided by

the total number of stimuli. Means, standard deviations

(SDs), and 95% confidence intervals (CIs) of the paired-

sample difference at each SNR level are calculated and shown

in Table 1. The results show that the modified speech is rec-

ognized better than original speech at all SNR levels with

minimum improvement of 0.14% at −6dB and maximum

improvement of 31.18% at −30dB. The modified speech sig-

nificantly improves speech intelligibility in background noise

in five of six SNR levels, i.e., 10% at 0dB, 18% at −12dB,

27% at −18dB, 23% at −24dB, and 31% at −30dB, respec-

tively. At these SNR levels, the 95% CI differences do not

include the value zero. However, the 95% CI difference at

−6dB includes the value zero, an effect which still requires

further study.

5. DISCUSSION

We have developed a joint time-frequency segmentation algo-

rithm, where the tiling is adapted both in time and frequency

based on the characteristics of the signal itself. The transient

component is obtained using all of the wavelet packet coeffi-

cients, whose tiling heights are larger than the tiling widths.

The transient component is used to enhance speech intelligi-

bility in background noise.

The intelligiblity of the modified speech in background

noise is better than that of the original speech for all six SNR

levels suggesting that the transient component is important to

speech perception. Our algorithm can improve speech intel-

ligibility up to −30dB, while Yoo et al. [2] and Tantibundhit

et al. [3] showed the improvements up to −25dB. Further-

more, our algorithm can improve speech intelligibility, even if

the intelligibility is already high (above −10dB [3]). Specif-

ically, speech intelligibility of the modified speech of Yoo et
al. and Tantibundhit et al. is not better than that of the origi-

nal speech at 0 and −5dB. Our modified speech significantly

improves speech intelligibility in background noise at 0, −12,

−18, −24, and −30dB, respectively. In future work, we will

perform a direct experimental comparison of our new algo-

rithm with the algorithms of Yoo et al. and Tantibundhit et
al..
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