PSYCHOACOUSTICALLY CONSTRAINED AND DISTORTION MINIMIZED SPEECH
ENHANCEMENT ALGORITHM

Seokhwan Jo and Chang D. Yoo

Div. of EE, School of EECS, KAIST,
373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
antilandOO@kaist.ac.kr, cdyoo@ee.kaist.ac.kr

ABSTRACT

A psychoacoustically constrained and distortion minimized speech
enhancement algorithm is considered. In general, noise reduction
leads to speech distortion, and thus, the goal of an enhancement al-
gorithm should reduce noise and speech distortion so that both are
inaudible. In this paper, a constrained optimization problem is for-
mulated so that speech distortion is minimized while distortion that
includes residual noise and speech distortion is kept below the mask-
ing threshold of the clean speech. Experimental results show that the
algorithm considered in this paper outperforms some of the more
popular algorithms in terms of improvement in segmental signal-to-
noise ratio (SegSNR) and spectral distance (SD).

Index Terms— speech enhancement, speech distortion, residual
noise, constrained optimization, masking threshold

1. INTRODUCTION

Noisy speech degrades the performance of speech communication
and recognition systems. Most important of all, noise induces lis-
tener fatigue. Up till now, many speech enhancement algorithms
have removed noise based on the minimum mean square criterion
[1, 2]. This may be an over simplification of what needs to be
considered. Noise reduction inevitably leads to distortion in speech
and should be kept to a minimum. There should be a delicate bal-
ance between speech distortion and noise reduction. In this paper,
a psychoacoustically constrained and distortion minimized speech
enhancement algorithm is considered. The estimator aims to mini-
mize speech distortion with the distortion and residual noise below
the masking threshold.

In the past, numerous speech enhancement algorithms using
psychoacoustic masking threshold have been proposed [3]-[8]. In
[3] and [4], the masking threshold was used to guide the derivation
of oversubtraction factor of the clean speech estimator. In [5], the
masking threshold was used as a constraint to keep the residual noise
inaudible. In [6], clean speech was estimated iteratively so that the
residual noise was kept below the masking threshold. Some algo-
rithms used the masking threshold not in the frequency domain but
in the signal subspace domain [7, 8] to constrain the residual noise
to be below the masking threshold. Most of the methods mentioned
had not considered constraining the speech distortion.

The algorithm considered in this paper derives the clean speech
estimator by psychoacoustically constraining the distortion to be be-
low the masking threshold. The estimator minimizes speech distor-
tion while keeping the distortion and residual noise below the mask-
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ing threshold. This paper provides a solution for the constrained
optimization problem. A modification of the estimator to improve
speech enhancement measurements is also provided.

This paper is organized as follows. The considered algorithm is
presented in Section 2. Section 2.1 presents psychoacoustically con-
strained and distortion minimized speech enhancement algorithm.
Section 2.2 presents the parameters for speech enhancement and the
calculation of masking threshold. Section 3 provides experimental
results, and finally Section 4 concludes the paper.

2. PSYCHOACOUSTICALLY CONSTRAINED AND
DISTORTION MINIMIZED SPEECH ENHANCEMENT
ALGORITHM

2.1. The constrained optimization

When a clean speech s[n] is corrupted by uncorrelated additive noise
z[n], noisy speech y[n] is given by

yln] = s[n] + z[n]. (1
In the frequency domain, the following relationship holds:
Y(w, 1) =8S(w,l)+ Z(w,l), (2)

where Y (w, 1), S(w, 1) and Z(w, l) are the short-time Fourier trans-
forms (STFT) of y[n], s[n] and z[n] at time frame I, respectively.
Here, w and [ denote frequency and time frame index, respectively.

Let S‘(w7 1) = G(w,1)Y (w,1) be an estimate of S(w, 1) where
G(w, 1) is the gain function for enhancement. The estimation error
can be expressed as

S(w,l) — S(w,1)
(G(w,l) = 1)S(w,l) + G(w, ) Z(w,1)
es(w,l) +ex(w,l), 3)

e(w,l) =

where £5(w, 1) and € (w, [) denote /th frame STFT of speech distor-
tion and residual noise.

Let Fs(w,1) = E{e(w,)es(w,1)} and E. (w,1) =
F{ef(w,)e.(w,1)}. Finding the optimal gain function G (w, )
can be formulated as solving the following constrained optimization
problem:

mén Es(w,l)

subject to Es(w,l) + E.(w,l) < T(w,1), 4)
where T'(w, ) is the masking threshold of the [th frame. The con-
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strained optimization problem will lead to a solution that minimiz-
ing speech distortion while constraining the total distortion below
the masking thresholds so that distortion and residual noise are in-
audible.

The problem can be solved by using the method of Lagrangian
multipliers as shown below:

min rgZa%(L(G,a), 5)

where L(G, o) = Es(w,l)—a(w, ) (Es(w, )+ E. (w, 1) =T (w,1))
and o(w, 1) is the Lagrangian multiplier. Substituting (3) into (5),

L(G,a) = (Gw,l)—1)2Ps(w,l)
+ a(w,)(G(w,l) — 1)2P5(w,l)
+ G*(w,D)P.(w,]) — T(w,1)), (6)

where P (w,1) = E{S" (w,1)S(w,1)} and P, (w,1) =
B{Z"(w,1)Z(w,1)} are the power spectrum of clean speech and
noise, respectively. Then, by partially differentiating L with respect
to the gain function (G, an optimal gain function can be derived as

§(w, 1)
a(w,l) (7)

Gw,l)= ———"1~2
WD)+ 15D

where £(w,l) = % which is defined as the a priori signal-to-
noise ratio (SNR). Substituting (7) into (5) leads to L as follows:

I a?¢ a’¢
(T+a)¢+a)?  (1+a)f+a)?
al+a)’¢®
T Tt tar ¢
_ —E+DEC -1 +0)’
(1 + )¢ +a)?
L (4267208 209 + (€~ CE)a o

(I+a)+a) ’

l
where C'= 2120 1f —(£+1)(€(C = 1) +C) > 0 — &5 > C,
then « does not exist, because the value of « that maximize L is oco.
Therefore, &671 < C must be satisfied for a value of « to be found
such that

oL
%_Olff+1<o. (9)
By solving the equation (9), two possible values of « are obtained.

By imposing the condition & > 0, « is given by
W EEO-DrO) —e/EO-DTC)
-+ DEC-1)+0) '

But, if {(C'— 1) + C > 1 which means C' > 1 is satisfied, then both
values of « are negative. Thus, if C' > 1, then « is set to 0. The
optimal gain function is derived as follows:

1 c>1
) e £-¢y/(E(C=D+0) <
G = £+ (ﬁ T er/J(e(C-1)+0O) ) c 1, €+1 <C
H &
not exist <1, a1 > C

(1

However, the gain function G in (1 1) needs to be modified for
the following two reasons. First, when ] + > (' (constraint can not
be satisfied), and therefore solution for G' does not exist. We need
to set G to a reasonable value. Second, when C' > 1 (T'(w,l) >
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P.(w,1) and noise is inaudible), there is no improvement in SNR
since G = 1. We need to set G to some value such that SNR is
improved. Thus, the proposed gain function is as follows:

__ &) E(w,D)
Glw,l) = S@gbi Csbeesa=C
HCRE=TER)] otherwise

_ S ) =&(w, )/ (§(w,)(C=1)+C)
where B, ) = Ve e-170)
over-subtraction factor controlled by a local averaged value of a pri-
ori SNR. The local averaged value of a priori SNR, &(w, 1), is de-
fined as follows:

and y(w,!) is an

_ w—+0.017
o - / £(, 1), (13)

0.027 J,_g.01x

When & (w,1) is low, noise reduction needs to be increased, thus,
v(w, 1) is a large value and the noise reduction is strengthened. The
converse happens when &(w, [) is high.

2.2. Parameters for enhancement and calculation of masking
threshold

2.2.1. Power spectrum of clean speech

In this paper, speech is modelled as an output of an autoregressive
(AR) process of order p and is mathematically expressed as

> besin—k]+g-dn] =0, bo=-1, (14)

k=0

where g and d[n] represent the gain and white Gaussian noise with
zero mean and unit variance. The subscript  signifies that s;[n] is a
short-time segment which is obtained by applying a window at the
region of interest. The power spectrum of s;[n] is expressed as

g2
Ps(w,l) = —. (15)
T Pk

2.2.2. Masking threshold calculation

To constraint the residual noise and the speech distortion to be below
the masking threshold, we need to calculate the masking threshold.
The calculation of the masking threshold is summarized in a number
of literatures [3, 9]. The steps involved in determining the masking
threshold are as follows:

1. Critical band analysis : sum up the power spectrum in each
critical band (Bark), where the power spectrum is obtained by
magnitude squaring the Fourier coefficient.

2. Spreading : convolve with a spreading function to take into
account the effect of adjacent critical bands.

3. Offset : subtract the offset by considering the tone-like or
noise-like nature of the speech.

4. Re-normalization : convert the spread spectrum back to Bark
domain.

5. Absolute threshold : compare with the absolute threshold and
choose the maximum between them.
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Fig. 1. Block diagram.

The scheme of the algorithm is shown in Fig. 1. The estima-
tor in (12) is derived by constraining both the speech distortion and
the residual noise to be inaudible. Because the masking threshold is
difficult to calculate from the noisy speech, speech is roughly esti-
mated, and this value is used to compute the masking threshold. And
the power spectrum of the speech is also computed from this roughly
estimated speech.

3. EXPERIMENTAL RESULTS

The algorithm considered was evaluated and compared to other
speech enhancement algorithms. The test sentences were selected
from the TIMIT database. Three kinds of background noises were
used in the experiments: white Gaussian, car, and babble noises.
Both speech and noise were sampled at 16 kHz. Noise was added
to clean speech with various noise levels. To determine the variance
of noise, a fast noise tracking estimator was employed [10]. The
performance of the considered algorithm was evaluated in terms
of segmental signal-to-noise ratio (SegSNR) and spectral distance
(SD).

The amount of noise reduction is generally measured by the
improvement of SegSNR, which is defined as

_ 1Tt & 2 st Nm]

SegSNR = £~ 10log ( T 25;01<S[n+Nm]7§[n+Nm]>2>
where s[n] and §[n] are the original clean and the estimated speech
samples, respectively. The upper and lower bound of the frame SNR
were set to 35 dB and -5 dB, respectively. All the SegSNR results
were averaged over 20 different speech signals.

The SD measures the dissimilarity between the spectrum of
frames of clean speech and enhanced speech. It is given by

N 2
SD=LyTt /LT [QOlog | (w)| — 2010g \Sm(w)|] dw

m=0
where | Sy, (w)| and | Sy, (w)| are the magnitude spectra of the clean
and the enhanced speech signals of the m'™ signal segment, re-
spectively. All SD results were averaged over 20 different speech
signals. Large value of SD implies bad performance.

The AR order for the speech was varied depending on mean
value of a priori SNR in frame: When the mean values of a pri-
ori SNR in frame is high, the order is high, and when it is low,
the order is low. It varied from 0 to 30. v(w,!) in (12) was set to
Y(w,l) = 045+6101°gio -5 T 1 (shown on Fig. 2). A rough es-
timation for the parameters and the masking threshold was obtained
using the Wiener filter (WF), and a priori SNR was estimated with
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Fig. 2. Adjustment of v(w,l). The equation is v(w,l) =
1 + 1 which is decided based on the value of

0.5+4¢1010g10 £(w,l)—15

SegSNR.

the decision directed method [2] with weighing factor set to 0.97.
The considered algorithm (PA) was compared to spectral subtrac-
tion (SS) [1], WE, MMSE-STSA estimator (M-S) [2], and WF with
constrained optimization using the masking threshold (MTWF) pro-
posed in [5]. For WE, M-S and MTWF, a priori SNR was estimated
with the decision directed method with weighing factor equal to 0.98
as proposed in [2].

Fig. 3 (a) illustrates the average SegSNR improvement using the
considered algorithms and the other algorithms for white Gaussian
noise at various noise levels. In Fig. 3 (b), the average SD is shown in
various white Gaussian noise level. Fig. 4 (a) illustrates the average
SegSNR improvement using the considered algorithms and the other
algorithms for car noise at various noise levels. In Fig. 4 (b), the
average SD is shown in various car noise level. Fig. 5 (a) illustrates
the average SegSNR improvement using the considered algorithms
and the other algorithms for babble noise at various noise levels. In
Fig. 5 (b), the average SD is shown in various babble noise level.
In these results, PA outperformed the other algorithms in terms of
SegSNR and SD.
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Fig. 3. (a) SegSNR improvement of the considered algorithm and
other algorithms in white Gaussian noise. (b) SD of the considered
algorithm and other algorithms in white Gaussian noise.
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Fig. 4. (a) SegSNR improvement of the considered algorithm and
other algorithms in car noise. (b) SD of the considered algorithm
and other algorithms in car noise.

4. CONCLUSION

This paper considers a psychoacoustically constrained and distortion
minimized speech enhancement algorithm. Speech enhancement in-
evitably leads to distortion in speech. Thus, the goal of an enhance-
ment algorithm should reduce noise and speech distortion. This pa-
per provides the clean speech estimator for any distortion that in-
cludes residual noise and the speech distortion to be kept below the
masking threshold of the speech. A modification of the estimator is
also provided to improve SNR. Experimental results show that the
algorithm considered in this paper outperforms some of the more
popular algorithms.
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