
MONAURAL VOICED SPEECH SEGREGATION BASED ON ELABORATE 
HARMONIC GROUPING STRATEGY *

 
Xueliang Zhang1  Wenju Liu1  Peng Li2  and  Bo Xu1,2 

 
1 National Laboratory of Pattern Recognition (NLPR) 
2 Digital Media Content Technology Research Centre 

Institute of Automation, Chinese Academy of Sciences Beijing, China, 100190 
{xlzhang, lwj}@nlpr.ia.ac.cn       {pengli, xubo}@hitic.ia.ac.cn 

 
ABSTRACT

 
Monaural speech segregation is a very challenging problem 
which has been studied by many researchers. In this paper, 
we focus on voiced speech segregation. Different strategies 
are used to segregate resolved and unresolved harmonics 
respectively. For resolved harmonics, “harmonicity” 
principle and a novel mechanism based on “minimum 
amplitude” principle are employed. Amplitude modulation 
rate is extracted by “enhanced” autocorrelation function of 
envelope to segregate unresolved harmonics which is more 
robust than previous method. An elaborate rule is also 
introduced to determine the regions dominated by resolved 
and by unresolved harmonics. Proposed algorithm is 
evaluated on Cooke’s 100 mixtures and compared with a 
state-of-the-art algorithm Hu and Wang model. Results 
show that proposed algorithm is more robust than the Hu 
and Wang model.  
 

Index Terms—Speech processing, Computational 
auditory scene analysis, Monaural speech separation
 

1. INTRODUCTION 
 
The existence of noise is unavoidable in the natural 
environment. To extract target speech from noisy 
background has its broad range of applications, such as 
automatic speech recognition, hearing aids and cell phone 
telecommunication systems.  

Humans have remarkable abilities to concentrate on 
target speech in noisy conditions like “cocktail party”. 
Computational auditory scene analysis (CASA) is oriented 
to simulate human’s processing of sound. Compared with 
other general methods, such as spectrum subtraction [1] and 
blind source separation [2], CASA has its advantages that 
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no strong assumption is required on the prior knowledge of 
noise and can be used on single channel input. Recent 
survey of CASA can be found in [3]. Based on a great 
amount of experiments on auditory psychology, Bregman 
proposed the theory of auditory scene analysis (ASA) [4] in 
which he concluded many principles of sound perception.  
His study on ASA offers a new way to deal with the 
monaural speech separation. 

A large proportion of sound is voiced, such as vowel in 
speech and music tone. Voiced sound consists of 
fundamental frequency (F0) and its several overtones 
which are called harmonic series. There is a good deal of 
evidence to suggest that harmonics tend to be perceived as 
a single sound. And this phenomenon is called 
“harmonicity” principle in ASA. Combined with 
“harmonicity” principle, F0 gives an efficient framework of 
sound separation in which F0 is extracted over time and 
then components over frequency from the same sound 
source are grouped together. Separation models in [5][6][7] 
are based on this general framework. Among these systems, 
Hu and Wang model [5] has an outstanding performance. 
The most remarkable contributions of Hu and Wang model 
are that 1). Different segregation methods are employed to 
group resolved and unresolved harmonics (definitions can 
be found in [ 8 ]) and 2). A novel method based on 
amplitude modulation (AM) rate for unresolved harmonics 
grouping is introduced.  Another notable point in Hu and 
Wang model is its segregation based on segments which is 
more robust.  

However, previous systems [5][6][7] encountered a 
common problem: it is difficult to segregate the noise on 
around overtones of target while human can easily hear and 
distinguish. In fact, there are other factors influencing the 
harmonic series fusion. Psycho-acoustical experiments 
show that if the amplitude of one of the overtones rises 
clearly above the others, it is perceptually segregated and 
stands out as an independent sound which is called 
“minimum amplitude” principle in [4]. Another reason for 
incorrect segregation of Hu and Wang model is AM rate 
detection error. To overcome the drawbacks, we propose a 
novel segregation for resolved harmonic is proposed based 
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on “minimum amplitude” principle and “harmonicity” 
principle. For unresolved harmonic, we revise the 
“enhanced” envelope autocorrelation function (ACF) in [9] 
to detect the AM rate. “Enhanced” ACF eliminates the fake 
period peaks and improves the robustness. The criterion for 
classification of resolved and unresolved harmonics has 
great influence on final segregation. Therefore, an elaborate 
classification is also proposed. 

This paper is organized as follows. In section 2, 
proposed model is discussed in detail. In section 3, 
experiment results and comparison are given. We make a 
conclusion of the whole work in section 4. 
 

2. MODEL DESCRIPTION 
 
The proposed model has six parts shown in Figure 1. 
 

 
Figure 1. Schematic diagram of proposed multistage system 

 
2.1. Front-End processing 
 
At first, input signal is decomposed by 128-channel 
gammatone filterbank [5] whose center frequencies are 
quasi-logarithmically spaced from 80 to 5 kHz and 
bandwidths are set according to equivalent rectangle 
bandwidth (ERB) [10]. Gammatone filterbank simulates the 
characteristic of basilar membrane of cochlear.  

Then the outputs of filterbank are transited into neural 
firing rate by hair cell model [11]. AM is an important 
feature for processing high frequency channels which are 
often dominated by several unresolved harmonics.  It can 
be obtained by lowpass filtering the output of hair cell 
model as in [12]. However, the process causes the detected 
AM and carriers to be mixed together, especially at low 
frequency channels. Here, AM is obtained by performing 
Hilbert transform on gammatone filter output and then 
filtering the squared Hilbert envelope by a filter with 
passband [50Hz, 550Hz]. Since containing frequencies up 
to bandwidth of original signal, the squared Hilbert 
envelope can solve the problem well. g(c, ·), h(c, ·) and e(c, ·) 
stand for gammatone filter output, hair cell output and AM 
in channel c respectively. 
 
2.2. Features extraction 

In channels, T-F unit is formed with 10 ms offset and 20 ms 
window. Within each T-F unit, ACF AH, envelope ACF AE 
and energy ratio Reng between filter output and its AM are 
computed by following equations. 
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where delay [0,12.5ms]. The maximum delay corresponds 
to 80 Hz, window length is W=320 and offset is T=160 
when sampling frequency (Fs) is 16 kHz. c and m indicate 
T-F unit in channel c at frame m. 

AH reflects the response frequency in T-F unit which is 
very important in resolved harmonic grouping and AE 
reflects the amplitude modulation rate used in unresolved 
harmonic grouping. Since different strategies used to group 
resolved and unresolved harmonic respectively, it is critical 
to use correct rule for different kind of harmonics. A new 
feature Reng is added which computes energy ratio between 
filter output and AM within T-F unit. It is motivated by the 
fact that fluctuation of amplitude modulation is relative 
small if T-F unit is dominated by single harmonic. 

We also compute the cross channel correlation between 
adjacent channels which indicates whether both channels 
respond to same source or not. The same feature is also 
used in [5] [6]. 

1

0

ˆ ˆ( , ) ( , , ) ( 1, , )
L

H H HC c m A c m A c m                 (4) 

1

0

ˆ ˆ( , ) ( , , ) ( 1, , )
L

E E EC c m A c m A c m                 (5) 

where ÂH(c,m,·) and ÂE(c,m,·) are zero-mean and unity-
variance versions of AH(c,m,·) and AE(c,m,·). 
 
2.3. Initial segmentation and pitch extraction 
 
Segment is made up of several T-F units with same 
properties. It is formed by utilizing T-F units’ similarity 
between adjacent channels, continuity between adjacent 
frames and comparative value of energy ratio. Previous 
studies [5] [6] showed that it was more robust to work on 
segment than on T-F unit directly. 

Combining the features in subsection 2.2., we regard 
that T-F unit ucm at channel c on frame m is dominated by 
resolved harmonic, if Reng(c,m) > R and CH(c,m) > p. And if 
Reng(c,m)  R and CE(c,m) > p, ucm is dominated by 
unresolved harmonics. In order to facilitate the explanation, 
we define a T-F unit as resolved if it is dominated by only 
one harmonic, otherwise as unresolved. Furthermore, 
resolved segment is made up of resolved T-F units and 
unresolved segment is made up of unresolved T-F units.    

Pitch extraction method in Hu and Wang model is 
employed in this paper which is suitable for continuous 
voiced speech. 
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2.4. Unit Labeling 

For resolved T-F unit, two parameters are calculated for 
further segregation based on segment. The first one is 
RH(c,m) 
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where P0(m) is detected pitch delay on frame m;  = 
32…200 corresponds to period delay of pitch range 80 Hz 
to 500 Hz when Fs is 16 kHz. 

It is regarded that response frequency of T-F unit is an 
overtone of pitch when RH(c,m)> H. As mentioned above, 
harmonics perception is not only influenced by 
“harmonicity principle”, but also other factors such as 
“minimum amplitude”. We introduce a novel feature called 
“harmonic fusion” denoted as HF(c,m) and calculated as 
follows 
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where fr(c,m) is response frequency of channel c on frame m; 
f0(m) is fundamental frequency; Gc is the filter gain of cth 
gammatone filter;  is an offset. N(·, , ) is a normal 
distribution with mean  and standard deviation . 

In fact, I indicates which harmonic dominates T-F unit. 
The normal distribution describes the rational energy ratio 
between two harmonics which can be perceived as a single 
source according to “minimal amplitude” principle. While 
HF(c,m) is the probability of ucm dominated by harmonic of 
target sound whose fundamental frequency is f0(m). It is 
motivated by the fact that if channel c is dominated by I th 
harmonic which is stronger than other harmonics after 
gammatone filtering, the original energy ratio should be 
larger than Rc(I,i). 

AM rate is an important feature for unresolved 
harmonic grouping which equals to pitch of target if 
dominated by unresolved harmonics of target [13]. In Hu 
and Wang model, AM rate is detected by bandpass filtering 
haircell output with passband around estimated pitch. And 
then detected AM rate is compared with estimated pitch. 
However, in some cases, the criterion in Hu and Wang 
model doesn’t work well, such as that when pitch of noise 
is double of pitch of target. Therefore we use ACF of 
envelope to detect AM rate. However, to use AE(c,m, ·) 
directly, as AR(c,m, ·) in equation (6), has a problem. Because 
spurious peaks (peaks on integer multiples of period delay) 
of ACF make it hard to decide which one corresponds to 
pitch peaks. So, AE(c,m, ·) is further processed into 
“enhanced” ACF by method in [9] where it is used to 
extract multipitch.  

Specifically, AE(c,m, ·) is half rectified and expended in 
time by factor N and subtracted from clipped AE(c,m, ), and 
again the result is half rectified. Iteration is performed by N 
= 1…6 to cancel spurious peaks in possible pitch range.
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where A'E(c,m, ·) is enhanced version of AE(c,m, ·). 

2.5. Segment segregation 

In this subsection, segregation algorithm based on segment 
is introduced.  According to the number of T-F unit with 
different property,  

( , )
 resolved 

( , ) ( , )
( , )     

'( , )
 unresolved 

'( , )

M n m
for segment

N n m K n m
Prob n m

M n m
for segment

N n m

 

(11) 
where M(n,m) is the number of units of segment n on frame 
satisfying RH(c,m) > H and HF(c,m)  f; N(n,m) is the 
number of units where RH(c,m)  H; K(n,m) is the number of 
units where RH(c,m) > H and HF(c,m) < f;  is a constant; 
M'(n,m) and N'(n,m) are the number of units which satisfy 
RE(c,m) > E and RE(c,m)  E respectively.  

If Prob(n,m) > 50%, it is regarded that segment n is 
fused to harmonics on frame m. And if fused frames are 
more than half of total segment frames, segment is added 
into foreground, otherwise added into background.  

The last module of proposed model is same as in Hu 
and Wang model including adjustment between foreground 
and background and segment extension. After that all the T-
F units belonging to foreground are used to resynthesis the 
target sound. 
 

3. EXPERIMENT RESULTS AND ANALYSIS 
 
Proposed model is evaluated on a corpus of 100 mixtures 
composed of ten voiced utterances mixed with ten different 
kinds of intrusions collected by Cooke [10]. The voiced 
utterance has continuous pitch nearly throughout whole 
duration. This corpus is very suitable to focus on 
performance of harmonic sound separation. The ten 
intrusions include: N0, 1 kHz pure tone; N1, white noise; 
N2, noise bursts; N3, “cocktail party” noise; N4, rock 
music; N5, siren; N6, trill telephone; N7, female speech; 
N8, male speech; and N9, female speech. Ten voiced 
utterances are regarded as targets. Fs of corpus is 16 kHz.  
       As showing figure 2., proposed model eliminates more 
click noise with less speech distortion than Hu and Wang 
model.  

Performance of proposed model is evaluated by signal 
to noise ratio (SNR) computed by equation (12) and 
compared with Hu and Wang model.  
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(a)                                           (b)                             

 
(c)                                                      (d)                             

Figure 2. Spectrogram comparison; (a) clean speech; (b) mixed with click 
noise; (c) result of Hu and Wang model; (d) result of proposed model. 

 
Table. 1.  SNR Results. (Mixture: Original degraded 
speech. HuWang: Hu and Wang model. Proposed: 
Proposed model. Idealmask: Ideal binary masking) 

 Mixture HuWang Proposed Idealmask
N0 -7.42 16.01 17.07 20.05 
N1 -8.27 5.59 5.94 6.84 
N2 5.62 14.27 17.26 18.46 
N3 0.80 5.83 6.26 7.97 
N4 0.68 8.25 8.50 11.33 
N5 -10.00 14.35 15.18 15.75 
N6 -1.62 15.53 16.23 19.90 
N7 3.85 10.46 11.50 13.86 
N8 9.53 14.06 14.43 17.65 
N9 2.75 6.88 7.40 11.21 

Avg -0.41 11.12 11.98 14.30
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where R(t) is the clean reference speech and S(t) is the 
synthesized waveform by speech segregation systems. 

In Tabel. 1., the outputs of “Idealmask” are synthesized 
by “ideal binary mask” which is obtained by calculating 
local SNR in each T-F unit before mixing of speech and 
noise. And the SNR results of “Idealmask” are the upper 
limit of CASA-based systems which employ “binary mask”. 

Each value in the table represents the average SNR of 
one kind intrusion mixed with ten target utterances. Each 
column lists the results of corresponding method.  The 
average over all intrusions is shown in the bottom row.  

As shown in Table.1., proposed model improves SNR 
for every intrusion and gets 12.39 dB improvement of 
overall mean against unprocessed mixture. And compared 
with results of Hu and Wang model, proposed model 
enhances separation results about 0.86 dB for overall mean. 
The highest enhancement of SNR happens on the mixtures 

of N2 and is about 3 dB higher than Hu and Wang model. 
According to our analysis, improvement to voiced utterance 
mixed by N2 mainly owes to more elaborate classification 
rule introduced in section 2.3. The reason for improvement 
of 1.0 dB on N0 and 0.7 dB on N6 is the same as on N2. 
The next highest improvements of SNRs are obtained on 
mixture of N5 and N7 with 0.8 dB and 1.0 dB. The 
enhancements on N7, N8 and N9 are primarily caused by 
improved group strategies for both resolved and unresolved 
T-F unit. 
 

4. CONCLUSION 
 
In this paper, we focus on harmonics segregation. A novel 
method based on “minimum amplitude” principle is added 
which makes resolved harmonic segregation more robust. 
We also propose a method of AM rate detection. Results 
show that proposed algorithm improves SNRs for all of ten 
kinds of noises over Hu and Wang model. 
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