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ABSTRACT
In this paper, a novel post-filtering method applied after the logSTSA
filter is proposed. Since the post-filter is derived from vector quanti-
zation of clean speech database, it has an equivalent effect of impos-
ing clean source spectral constraints on the enhanced speech. When
combined with the logSTSA filter, the additional filter can notice-
ably suppress residual artifacts by effectively lowering the residual
white noise of decision-directed estimation as well as reducing the
musical noise of maximum likelihood estimation. Compared to the
logSTSA enhanced speech, the overall enhanced speech is able to
raise the PESQ score by nearly half a point.

Index Terms— Speech enhancement, Minimum mean-square
error (MMSE) estimation, Vector quantization

1. INTRODUCTION

The Ephraim-Malah [1] log-spectral short-time amplitude (logSTSA)
filter is an estimator that minimizes the mean-square error of the log
spectra for speech signal corrupted by Gaussian additive white
noise. Although the logSTSA filter is capable of reducing most of
the white noise in the noisy speech signal, it has two limitations: 1)
the decision-directed (D-D) SNR estimator leaves colorless residual
noise; 2) the maximum likelihood (ML) SNR estimator produces an
enhanced signal with a SNR higher than the D-D estimator while
introducing the well known annoying “musical noise.” The musical
noise is caused by the lack of spectral constraints during spectral
amplitude estimation. Without sensible spectral constraints, spec-
tral components in some frequency bins may be unduly boosted or
eliminated, resulting in musical noise. Various approaches that aim
at modifying the SNR estimator have been investigated in the past
[2] [3]. However, these methods are still under the framework of
the logSTSA filter without much additional benefit in alleviating
the residual artifacts. To reduce these artifacts, whether residual
white noise or musical noise, two approaches can be considered,
namely, the modeling of artifacts or the incorporation of source
(clean speech) information. Modeling of the artifacts is difficult
in that different input SNR levels and different logSTSA filter pa-
rameters create a wide range of possibilities. Therefore, this paper
focuses on utilizing the statistics of clean speech signals instead.

Since the spectrum of enhanced speech should follow the statis-
tics of clean speech spectra, a vector quantized codebook that con-
tains only clean speech spectra is utilized to impose spectral con-
straints. Each codeword is a clean model spectrum that can be rep-
resented by linear predictor coefficients. With clean model spectra
available, the speech enhancement problem transforms into finding
the best matching model spectrum given only noisy speech utterance
and imposing the spectral constraints on the noisy signal.

Search of the optimal model spectrum is done by spectral distor-
tion measurement as well as the idea drawn from mixture autoregres-
sive hidden Markov model (ARHMM) [4], where each state in the
HMM corresponds to each codeword. For the purpose of our investi-
gation, only the state emission probability is utilized while the state
transition probability is not imposed. This gives us the insight on
testing this enhancement algorithm with a frame by frame analysis
approach, which is capable of processing in real time.

The post-filtering method is motivated by the idea of speech
signal synthesis based on linear predictive coding (LPC). Tradition-
ally, the signal to be synthesized is passed through an inverse filter
to obtain the residual signal or excitation signal. Whether through
additional coding of the excitation or not, the excitation is then
passed through a filter of the form σ/A(z), where σ is the gain
and 1/|A(ejω)| is the model spectrum of the signal, to synthesize
the speech. Given only noisy signals, finding an optimal model
spectral sequence is possible while obtaining a clean residual signal
is nontrivial. Therefore, the noisy signal or the logSTSA enhanced
signal itself is treated as the residual signal, with each frame of the
signal normalized by its own gain in that frame. By post-filtering,
the spectral peaks of the noisy signal or the signal estimated from
logSTSA filter can be further enhanced, and in the meantime the
post-filter helps mask the noise surrounding the spectral peaks.

In Section 2, we review the Ephraim-Malah logSTSA filter with
ML and D-D approach. In Section 3, we present the proposed fil-
tering method. Experimental results are presented in Section 4 and
conclusion is given in Section 5.

2. MMSE LOG-SPECTRAL AMPLITUDE ESTIMATOR

Let y(nT) denotes the noisy speech samples, where T is the sam-
pling period and n is the sample index. Let x(nT) and d(nT) de-
note the clean speech and additive noise samples, respectively. Let
Yk(m), Xk(m) and Dk(m) be the kth spectral component, in the
mth analysis window, of the noisy signal y(nT), the clean speech
signal x(nT) and the noise d(nT), respectively.

Since the clean speech signal is unknown, an estimate of the

clean speech spectral component X̂k by the Ephraim-Malah MMSE
logSTSA filter [1] is given by

|X̂k| =
ξk

1 + ξk
exp

j
1

2

Z ∞

νk

e−t

t
dt

ff
|Yk| (1)

where νk is defined by

νk ≡ ξk

1 + ξk
γk (2)
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and ξk, γk are defined by

ξk ≡ λX(k)/λD(k), a priori SNR (3)

γk ≡ |Yk|2/λD(k), a posteriori SNR (4)

where λX(k) and λD(k) denote the variances of the kth spectral
components of the clean speech and the noise, respectively.

Since clean speech and noise variances are unknown, two ap-
proaches can be used to estimate the a priori SNR. The D-D a priori
SNR estimation [5] is given by

ξ̂k,D−D(m) = α
|X̂k(m − 1)|2
λD(k, m − 1)

+ (1 − α)P{γk(m) − 1} (5)

where X̂k(m−1) is the amplitude estimate of the kth signal spectral
component in the (m − 1)th analysis frame, α is a weighting factor
that is set as 0.98 and P{·} is defined as

P{x} ≡
(

x if x ≥ 0

0 otherwise.
(6)

The name ”decision-directed” comes from the fact that the a priori
SNR is updated based on the previous frame’s amplitude estimation.

The ML estimation is based on estimation of signal variance by
maximizing the joint conditional PDF, which is given by

λ̂X,ML(k) = arg max
λX (k)

{p(Yk(m)|λX(k), λD(k)} . (7)

This estimator results in the following a priori SNR estimator

ξ̂k,ML(m) =

8<
:

1
L

L−1P
l=0

γk(m − l) − 1 if nonnegative

0 otherwise

(8)

where estimation is based on L consecutive frames Yk(m) ≡
{Yk(m), Yk(m− 1), ..., Yk(m−L + 1)}, which are assumed to be
statistically independent. The actual implementation is a recursive
average [5] given by

γ̄k(m) = αγ̄k(m − 1) + (1 − α)
γk(m)

β
(9)

ξ̂k(m) = P{γ̄k(m) − 1} (10)

where α and β are specified as 0.725 and 2, respectively.

3. PROPOSED FILTER

Post-filtering is done by passing the gain normalized noisy signal
or the logSTSA enhanced signal through a filter 1/A(z). However,
the spectral peaks of frames with higher SNR may be enhanced too
much so that the enhanced speech signal may sound narrowband and
additional artifacts may be introduced. To compensate for this un-
desirable effect, a smoother post-filter 1/A′(z) is used for mild sup-
pression of noise as well as retaining the naturalness of the enhanced
speech sound. This is obtained by taking the square root of the spec-
trum 1/A(ejω) in frequency domain, taking the inverse DFT to get
the time domain signal and applying the LPC analysis on the time
domain signal. This procedure generates the proposed filter 1/A′(z)
that has a smoother magnitude response than 1/|A(ejω)| while leav-
ing the positions of spectral peaks and valleys unchanged. Sample
magnitude responses of the two filters are shown in Fig. 1.
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Fig. 1. Magnitude responses of the clean speech envelope, the best
matching codeword 1/A(z) and the proposed filter 1/A′(z)

In order to impose spectral constraints on the enhanced speech,
a codebook that contains only clean model spectra are trained. Since
only the shape of the model spectrum is utilized, a truncated cepstral
distance, which is independent of signal gain level, is chosen, and is
given by

d2
c(L) =

LX
n=1

(cn − c′n)2 (11)

where cn is the nth cepstral coefficient and L is the order of the
truncated cepstral coefficients.

With clean model spectra available, the enhancement problem
narrows down to finding a sequence of best matching spectrum that
is closest to the original clean speech spectrum, given a noisy speech
signal. An iterative search based on repeatedly applying soft and
hard decision estimation is proposed.

The soft decision method is motivated by the idea of HMM-
based MMSE estimation [6]. Since the optimal filter for each frame
is unknown, all filters are tried, and each filtered signal is assigned
a weighting function that takes a form of state emission probability
[4] given by

f(o,a) = (2π)−N/2exp

j
−1

2
δ(o,a)

ff
(12)

where N is the frame length, oT = [o[0], o[1], ..., o[N − 1]] are
the observed samples in one frame, aT = [1, a1, a2, ..., ap] are the
linear predictor coefficients that are derived from the codebook, {·}T

denotes matrix transposition, p is the LPC order and δ(o,a) [7] is
given by

δ(o,a) ≡ r(0)ra(0) + 2

pX
n=1

r(n)ra(n) (13)

where ra(n) and r(n) are defined as

ra(n) ≡
p−nX
i=0

aiai+n (14)

r(n) ≡
N−n−1X

i=0

o[i]o[i + n]. (15)
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Fig. 2. A block diagram of soft estimation

The term δ(o,a) takes the form of dLR + 1, where dLR is the like-
lihood ratio distortion measure, which is given by

dLR(
1

|A(ejω)|2 ,
1

|Ap(ejω)|2 ) =

Z π

−π

|A(ejω)|2
|Ap(ejω)|2

dω

2π
− 1

=
atRpa

σ2
p

− 1

(16)

where a comes from the model spectrum 1/|A(ejω)|, Rp/σ2
p is the

gain normalized pth order autocorrelation matrix of the spectrum
1/|Ap(ejω)| that comes from the observed speech samples o. Since
f(o,a) is inversely proportional to dLR, the larger the likelihood
ratio distortion dLR, the smaller the weight is applied.

A block diagram of soft estimation is illustrated in Fig. 2. Let
ôi denotes the signal enhanced by logSTSA and filtered by 1/A′i(z),
where i is the ith entry in the codebook. The soft estimation is given
by

x̂ =
KX

i=1

f ′(ô,ai)ôi (17)

where K is the size of the codebook and f ′(ô,ai) is a normalized

version of f(ô,ai) such that
PK

i=1 f ′(ô,ai) = 1.

The hard decision method, on the other hand, select one can-
didate codeword from the codebook that gives the lowest distortion
measure between the noisy signal or the enhanced signal and the
model spectrum based on the cepstral projection measure [7], which
is given by

d(c, co) = ‖co‖ − cT
o c/‖c‖ (18)

where co is the noisy or enhanced cepstral coefficients, c is the code-
word and ‖·‖ is the norm of a vector. This distortion measure has the
advantage of being robust to additive noise in spectral comparison.
Thus, it is expected to produce a more accurate estimate of the clean
model spectral codeword.

A block diagram of the algorithm is shown in Fig. 3. The overall
loop is implemented by post-filtering the noisy signal by hard deci-
sion, then the enhanced signal is passed through soft decision, and
the whole process is iterated. The idea is motivated by two observa-
tions. Firstly, whenever a wrong codeword in the hard decision esti-
mation is chosen, the wrong codeword may stay in the same state no
matter how many iterations of hard decision is applied. On the other
hand, once the correct codeword is chosen, the codeword obtained
after additional iterations does not deviate too much from the ideal
codeword. Therefore, by utilizing soft decision, additional flexibil-
ity is given such that there is a better chance for hard decision to find

Fig. 3. A block diagram of the overall loop

an optimal match. Secondly, the enhanced signal produced by soft
decision is more natural sounding in that, unlike hard decision where
a wrong sequence of filters can introduce severe spectral distortion,
errors are distributed among several different filters.

4. EXPERIMENTAL RESULTS

The experiments were performed using the TIMIT database. Code-
book training was performed using 4620 sentences of clean speech
and testing was performed using 120 speech utterances. The speech
database for testing were different from those used for training. Both
male and female speakers were included. Gaussian white noise or
pink noise was added to each testing utterance at signal-to-noise ra-
tio (SNR) of -5, 0, 5, 10, 15 and 20 dB. The noise variance estimate
of logSTSA was done by averaging sections with only noise.

In our experiments, all speech samples were downsampled to
8kHz prior to training and testing, and a frame size of 20ms with
50% overlap was used. A Hanning window was applied on each
frame during training and testing. A 10th order LPC analysis was
used and the order of truncated cepstral coefficients was set to be
20. Five codebooks of clean spectral shapes were trained using trun-
cated cepstral distance with 32, 64, 128, 256 and 512 codewords.
As the codebook size grows large, however, the enhancement results
sounded similar. Thus, speech quality evaluation was performed us-
ing a codebook of size 32 for faster computation.

Fig. 4 shows the spectrograms of clean speech, noisy speech
and enhanced speech. By comparing logSTSA D-D with logSTSA
ML, we can see that logSTSA D-D has a higher background white
noise than logSTSA ML, while logSTSA ML has isolated peaks in
high frequency region that represents musical noise. It is clearly
seen that the proposed method effectively lowers the noise floor in
logSTSA D-D and greatly suppresses the intensity of isolated peaks
in logSTSA ML, while leaving most speech information intact.

Fig. 5 and Fig. 6 show the PESQ scores of different enhance-
ment methods under two noisy conditions. PESQ, Perceptual Eval-
uation of Speech Quality [8], is an objective measurement tool that
predicts the results of mean opinion score (MOS) in subjective lis-
tening tests. The reason why PESQ score is chosen as opposed to
SNR measurement is that the quality of speech cannot be directly
reflected by SNR measurement. For example, the musical noise in
ML estimator is usually considered more annoying than the D-D es-
timator and this can be observed in Fig. 5 and Fig. 6. However,
the ML estimator is better than the D-D estimator is terms of SNR
measurement, which does not fully take into account the percep-
tual quality of enhanced speech. As is observed, the post-filtering
method proposed in this paper is able to increase the PESQ score of
the logSTSA filter by nearly half a point, which is significant.
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Fig. 4. Spectrograms of enhanced signal at 10 dB input SNR, where
the noise type is Guassian white noise

5. CONCLUSION

A two pass filtering technique based on logSTSA filter and post-filter
for speech enhancement is discussed in this paper. The post-filter is
based on vector quantization of the clean speech training database
and is equivalent to imposing clean speech spectral constraints on the
enhanced signal. Experimental results show that the use of post-filter
can effectively reduce the residual white noise in D-D estimation and
the musical noise in ML estimation. The results are confirmed by
consistently higher PESQ scores.
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Fig. 5. PESQ scores of speech corrupted by Gaussian white noise
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