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ABSTRACT

In this paper, we investigate the speech feature extraction problem
in the noisy environment. A novel approach based on Gabor filter-
ing and tensor factorization is proposed. From recent physiological
and psychoacoustic experimental results, localized spectro-temporal
features are essential for auditory perception. We employ 2D-Gabor
functions with different scales and directions to analyze the local-
ized patches of power spectrogram, by which speech signal can be
encoded as a general higher order tensor. Then Nonnegative Tensor
PCA with sparse constraint is used to learn the projection matrices
from multiple interrelated feature subspaces and extract the robust
features. Experimental results confirm that our proposed method
can improve the speech recognition performance, especially in noisy
environment, compared with traditional speech feature extraction
methods.

Index Terms— tensor factorization, gabor filtering, feature ex-
traction, speech recognition, auditory perception, acoustic noise

1. INTRODUCTION

The performance of speech recognition systems degrades in noisy
conditions, which is a primary issue in utilizing such systems in real
world. The degradation has been attributed to unavoidable mismatch
between training and recognition conditions. Several methods have
been proposed to reduce the effects of mismatch. Feature com-
pensation techniques such as cepstral mean normalization (CMN),
RASTA[1] have been developed for robust speech recognition. Fea-
ture extraction methods motivated by human auditory system[2]
have been used to extract reliable features from speech signal, espe-
cially in noisy environments.

Recently the computational auditory nerve models attract much
attention from both neuroscience and speech signal processing
communities. Gabor STRF model[3] has been proposed to fit the
auditory nucleus of interior colliculus by using spectral and temporal
Gabor functions. Jeon[4] proposed a computational auditory central
system model and interpreted various feature selection methods that
parallel the computation of MFCC.

As a powerful data modeling tools, multilinear algebra of the
higher order tensors has been proposed as a potent mathemati-
cal framework to manipulate the multiple factors underlying the
observations. Currently common tensor decomposition methods in-
clude: (1) the CANDECOMP/PARAFAC model[5]; (2) the Tucker
Model[6]; (3) Nonnegative Tensor Factorization (NTF) with non-
negative constraint on the CANDECOMP/PARAFAC model[7].
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In this paper, 2D-Gabor functions are used to extract the spectro-
temporal information, which employs multi-resolution wavelet over
scales and directions to analyze the speech power spectrogram. Ten-
sor analysis approach called NTPCA is derived by maximizing the
covariance of data samples on tensor structure. The advantages of
our method include following: 1) motivated by the human being
auditory perception mechanism, multi-resolution spectro-temporal
modulation with different scales and directions simulates the audi-
tory cortical representation. The speech signal can be encoded as
higher order tensor, which is beneficial to representing the percep-
tual information and improving robustness against noise. 2) sparse
constraint on NTPCA enhances energy concentration of speech
signal which will preserve the useful feature during the noise reduc-
tion. The Gabor tensor feature extracted by NTPCA can be further
processed into a representation called Gabor Tensor Cepstral Coef-
ficients(GTCC), which can be used as feature for speech recognition.

2. NONNEGATIVE TENSOR PRINCIPAL COMPONENT
ANALYSIS

-
X z

Fig. 1. Tucker model for tensor factorization

Multilinear algebra is the algebra of higher order tensors. A
tensor is a higher order generalization of a matrix. Let X &
RN1XN2xX..XNu denotes a tensor. The order of X is M. An
element of X is denoted by X, .ns.,...,n,,» Where 1 < n; < N; and
1 < 4 < M. The mode-i vectors of X are N;-dimensional vectors
obtained from X by varying index n; and keeping other indices
fixed. A tucker tensor factorization model is shown in Fig.1 where
the core tensor Z € RI*T2X-XIm and U, € RN ¥k (k =
1,2,---, M). The Tucker model represents the data spanning the
k-th modality by the vectors (loadings) given by the I}, columns of
Uy such that the vectors of each modality interact with the vectors
of all remaining modalities with strengths given by core tensor Z.
The details about multilinear algebra can be found in[6].

In [8], Zass proposed a nonnegative variant of the ”Sparse PCA”
called Nonnegative Sparse PCA. In this paper, we extend this model
in the tensor structure. Let X; denote the ¢-th training sample
with zero mean which is a tensor, and Uy be the k-th projection
matrix calculated by the alternating projection procedure. Here
X;(1 < i < n) are r-order tensors that lie in RY1*N2X=Nr apq
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U, € RN#>*Ne (k = 1,2,---,r). We define nonnegative ten-
sor principal component analysis by optimization problem(1) and
use the alternating projection method, which is decomposed into r
different optimization sub-problems:
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In equation(1), ||A||% is the squared Frobenius norm, mat(X) is
mode-d matricizing operator for tensor X, X; = [[,_, ., Xk is
mode-d matrix product operator on each mode of tensor X except -
th mode, the second term relaxes the orthogonal constraint for com-
mon principal component disjoint, the third term is the sparse con-
straint, o > 0 is a balancing parameter between reconstruction and
orthogonality, 5 > 0 controls the amount of additional sparseness
required. As described in[8], above optimization problem is a con-
cave quadratic programming, which is an NP-hard problem. There-
fore it is unrealistic to find the global solution of (1), and we have
to settle with a local maximum. Here we give a function of wu;;,
(the g row of the u;, column vector with index ) as the optimization
objective,

o C:
I (uipg) = fzu?pq + éu?pq + C1Uipg + const, ()

where const is the independent term of ;4 and

Ny Ny Ny
E Qlgilip; — O E E UipjUlijUtiq — 3,

i=1,i%q i=1,i#p j=1,j#q

Ny Ny
2 2
Qlgq + ¢ — Q- Uppi — Q- Uliqs

i=1,i#q i=1,i#p
where a;;; is the element of A;. Setting the derivative with respect
to upq to Zero we obtain a cubic equation,

of

Ouipg

C2 =

= _a/u‘?pq + C2Ulpq +c1 = 07 (5)

We calculate the nonnegative roots of equation(5) and zero as the
nonnegative global maximum of f(upq). Table 1 lists the alternat-
ing projection optimization procedure for the Nonnegative Tensor
PCA.

3. GABOR TENSOR FEATURE EXTRACTION

Inspired by recent physiological and psychoacoustic experimental
results, much insight has been obtained from the measurements of
so-called spectro-temporal response fields(STRF) of primary audi-
tory cortex (Al) cells, which summarizes the way neuron cell re-
sponds to the stimulus. In this paper, we employ multi-resolution
spectro-temporal modulation filters to model the primary auditory
cortical representation. The power spectrum is encoded into a multi-
linear feature space by a population of cortical cells. The method we
described is not biophysical in spirit, while rather it abstracts from
the physiological and psychoacoustic experiments, which is likely to
be relevant in the design of speech recognition system.

Table 1. Alternating Projection Optimization Procedure for NTPCA

Input: Training tensor X; € RNVN2XNe (1 < 5 <),
dimensionality of the output tensors Y; € RN1 *N2 XN 1
(3, maximum number of training iterations 7', error threshold e.

Output: projection matrix U; > 0(l =1,---,r), Y.

Initialization: Set Ulm) >0(l=1,---,r) randomly, t=1;.

Step 1. Repeat until convergence {

Step 2. For I=1tor {

Step 3. Calculate Al(t_l);

Step 4. Iterate over every entries of U, l(t) until convergence
-Set the value of u;,, to the global nonnegative
maximizer of equation(4) by evaluating it over
all nonnegative roots of equation(5) and zero;

}
Step 5. Check convergence: training stage of NTPCA
if £ > T or update error e < &
}
Step 6. Yj = Xj HLT:I XlUl

3.1. Gabor Functions

In [9] the neuronphysiological evidence indicates that the cells in the
auditory cortex are tuned to localized spectro-temporal modulations.
The STREF of these cortical cells [3] can be modeled by 2D Gabor
functions. The 2D-complex Gabor function g, 4(t, f) is the product
of a Gaussian envelope and a complex plane wave, defined as

1.2 52.52

gu,v(taf) = gk(f) = % :

where Z = (t, f) is a sample of the power spectrum, k is a vec-
tor, which determines the scale and direction of Gabor functions
k = kye'®?, where k, = 2~ = ST, P = u%, v determines
the scale of Gabor functions, u determines the direction of Gabor
functions, and K determines the total number of directions. Fig.2(a)
gives examples of the real part of Gabor functions with four different
scales and four different directions.
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(a) Gabor functions (b) Cortical representation

Fig. 2. (a) The real part of Gabor functions for different scales and
directions. (b) Cortical representation of primary auditory cortex.

3.2. Gabor-based Speech Tensor Representation

The primary auditory cortex analyzes the auditory spectrum into
more elaborate representation and estimates the spectral and tempo-
ral modulation content. The spectrum is encoded by a population of
cortical neurons, which are selective to different spectro-temporal
modulation parameters. As the description in [10], the neural fir-
ing rates results are called cortical response. The output cortical

4650



representation is higher order tensor structure, which are along
three independent orders: the center frequency x, the scales(spectral
bandwidth) s, the phrase (local symmetry) ¢. The scales describe
the bandwidth of each response area along the tonotopic frequency
axis and phase denotes the symmetry.

Above cortical representation based on tensor structure can be
modeled by multi-resolution 2D Gabor transformation for the spec-
tral pattern. From Fig.2(b) we can see the cortical representation
with Al neurons that has its own (z, s, ¢) coordinates. One example
shows the cortical response in the case ¢ = 0, which the neural
response areas have a centered excitatory band that is symmetri-
cally flanked by inhibitory side bands. While as ¢ increases above
0 rad, the response areas become more asymmetric with stronger
inhibitory sidebands above CF in one direction and below the CF
in the opposite direction. This corresponding result can be imple-
mented by the 2D Gabor functions as direction parameter u changes.

The output of this cortical model is multiple dimensional array.
In a given time window, the power spectrum X (¢, f) € RV**N¢can
be encoded as a 4-order tensor X € RNt*Ns*NaxNa  From
Fig.3(a) we can see clearly that the cortical representation has
discriminative spectral patterns with different scale and direction
parameters. This lie on the neuron response area.

The cortical representation can be calculated by convolving the
Gabor functions g, (t, f) with the power spectrum X (¢, f). The
result is a 4-order tensor X € RNt XNy >*NsXNa which the first two
indices give the time and frequency axis, and the third index gives
the scale parameters, and the fourth index gives the value of direc-
tion. We select the magnitude part of this tensor shown in Fig.3(a)
as our Gabor-based speech feature after the Gaobr filtering.For a
fixed scale and direction parameter Gabor function, the convolution
result can be defined as

Gu-,’U(t7f) = |X(t7f)®gu,’v(t7f)|7 (7)

The convolution results G, (t, f) are spectro-temporal fea-

Direction
Direction
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(b) average scale features

4-order Tensor

(a) Gabor tensor feature

Fig. 3. (a) Gabor tensor feature. The rows show different scales and
the columns show different directions for the power spectrum. (b)
The average scale features based on sparse Gabor tensor feature.

tures with different filter characteristics, which investigate the mul-
tilinear feature space. We employ mel-scale filterbanks to map the
actual frequency into perceived frequency without losing useful au-
ditory information, The filtered results G, (¢, f) are obtained by a
set of critical bands triangular filters which are roughly linear below
1kHz and logarithm above.

3.3. Tensor Analysis and Sparseness Constraint

In order to extract the robust speech feature based on tensor struc-
ture, we transform the Gabor-based multi-resolution representation
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(a) Projection Matrix (b) Samples for sparse feature vector

Fig. 4. (a)Projection Matrix. (b)Samples for sparse feature vector.

into multiple interrelated subspaces by NTPCA to learn the projec-
tion matrices U;, (I = 1,2,3,4). Compared with traditional sub-
space learning methods, the extracted tensor features may charac-
terize the elaborate spectro-temporal patterns of cortical represen-
tation and preserve the discriminative information for recognition.
We employ the sparse localized projection matrix U € R*Ns in
time-frequency subspace to transform the auditory feature into the
sparse feature subspace, where d is the dimension of sparse feature
subspace. The sparse feature representation S, ,, is obtained via the
following transformation:

Sﬂ’v(tvf) :U*Gumyv(taf% (8)

Fig.4(a) shows an example of projection matrix in spectro-
temporal domain. From this result we can see that most elements of
this project matrix are near to zero, which accords with the sparse
constraint of NTPCA. Figure 4(b) gives several samples for coeffi-
cients of feature vector after projection which also prove the sparse
characteristic of feature. The sparse constraint can make the feature
robust based on the fact that in sparse coding the energy of signal is
concentrated on a few components only, but the energy of additive
noise remains uniformly spread on all the components. After sparse
projection, the noise is reduced while the useful sparse information
is not strongly affected.

Above Gabor-based sparse representation method is very sim-
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Fig. 5. The sparse Gabor tensor feature extraction framework.

ilar to the image representation methods based on Gabor functions.
However the computational cost of this method is high. Here we
calculate the average scale features G, (¢, f) which are the sum
over scales of Gabor-based sparse features. Fig.3(b) shows exam-
ples of the average scale features. At last we apply discrete cosine
transform (DCT) on the average scale feature vectors to de-correlate
the feature components. A diagram of feature extraction framework
is shown in Fig.5.

4. EXPERIMENTS RESULT

In this section, we describe the evaluation results of speech recogni-
tion system using GTCC feature in the noisy environments. Com-



Table 2. Recognition accuracy in six noisy conditions averaged over
SNRs between 0-15dB for GTCC and other features using Grid cor-
pus mixed with additive noise.

(%) GTCC | PLP MFCC | CMN | HLDA
White 51.71 | 47.01 | 48.36 47.39 | 44.81
Babble 60.70 | 56.59 | 55.49 57.05 | 57.29
Factory 7442 | 6470 | 62.62 65.06 | 65.20
Leopard 81.62 74.97 | 73.68 77.15 | 75.17
M109 73.69 | 66.58 | 64.71 66.56 | 66.76
Destroyer | 67.08 58.78 | 56.36 57.31 | 58.17

parisons with MFCC, PLP features and CMN, HLDA enhancement
methods are also provided.

The performance of GTCC is tested on the Grid corpus. It
was created for research in speech separation and recognition. The
total corpus consists of 17000 sentences (500 from each of the 34
speakers). Sentences in the Grid corpus are 6-word, fixed syntax
utterances such ”bin blue at F 2 now”. This recognition task is
more difficult than the digit or letter based only corpora, for a more
complex phone set.

The sampling rate of speech signal was 8kHz. To compute
the power spectrum, a Hamming window of 25 ms was shifted
over an input speech utterance every 10 ms. At each window po-
sition, a segmented utterance was converted to its corresponding
256-dimensional FFT-based power spectrum vector. The multi-
resolution Gabor-based feature were derived from the power spec-
trum by Gabor functions with 4 different scales and 4 different di-
rections. The output magnitude results were filtered by 40-channel
Mel filterbanks to create the tensor representation for tensor factor-
ization.

We select 2000 sentences as training data randomly to learn pro-
jection matrices in each mode. The speech signals were transformed
into tensor feature samples as the input for NTPCA. For the final
feature set, the GTCC feature vectors for the evaluation were ob-
tained from the 13 cepstral coefficients(without zero-th coefficient)
combined with 13 mel cepstral coefficients and their delta (A) and
acceleration (AA) coefficients, which correspond to a vector of 78
coefficients.

From the whole corpus, 8000 sentences were randomly chosen
to train a speaker-independent recognizer using GTCC feature. The
recognizer was monophone-based system, where each word is a
18-state HMM with the probability density functions described by
3-gaussian mixtures. 3600 sentences were mixed with six noises
white, babble, factory, leopard, m109 and destroyer operation room
(600 sentences for each noise), where the noise samples were ob-
tained from Noisex-92 Database. The SNR intensities were 15dB,
10dB, 5dB and 0dB for each noise. For comparison, the perfor-
mance of PLP, MFCC, MFCC+CMN and MFCC+HLDA with
39-order cepstral coefficients are also tested.

For clean speech, the performance of both systems are com-
parable with high recognition rates where the word error rate is
about 5% . Table 2 gives a average accuracy under different noisy
conditions, respectively. GTCC features demonstrate significantly
better performance in the presence of factory noise and slightly
better performance in the presence of babble noise. For the babble
noise, it consists of other humans’ speech signals, which corrupts
the entire frequency bands and also shares the statistical properties
of the reference signal. Then the performance of GTCC is reduced
even though it is more robust than MFCC etc. While for other
sources of noise, the characteristics of statistics are very different
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from that of reference statistics, which GTCC features can utilize
to extract the robust features. The experimental results suggest that
this auditory-based tensor representation feature is robust against the
additive noise and suitable to the real application, indicating the po-
tential of GTCC for dealing with a wider variety of noisy conditions.

5. CONCLUSION

In this paper, we considered the problem of speech feature extraction
in noisy environment. Compared with traditional subspace learn-
ing methods, this study is mainly focused on encoding of speech
signal into a general higher order tensor which simulated the cor-
tical neuron responses model motivated by the auditory perception
mechanism of human being. The sparse constraint on NTPCA
helped to reduce the noise component and preserve the useful in-
formation. The discriminative and robust spectro-temporal feature
was extracted after multiple subspace projection. Experiment result
showed that the coding efficiency was improved compared with
MEFCC, PLP features and CMN, HLDA enhancement methods. This
could be attributed to the ability of algorithm to find a better repre-
sentation of the acoustic clues related to auditory perception model
based on tensor structure.
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