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ABSTRACT

In previous work we introduced a new missing data imputation
method for ASR, dubbed sparse imputation. We showed that the
method is capable of maintaining good recognition accuracies even
at very low SNRs provided the number of mask estimation errors is
sufficiently low. Especially at low SNRs, however, mask estimation
is difficult and errors are unavoidable. In this paper, we try to reduce
the impact of mask estimation errors by making soft decisions, i.e.,
estimating the probability that a feature is reliable. Using an isolated
digit recognition task (using the AURORA-2 database), we demon-
strate that using soft masks in our sparse imputation approach yields
a substantial increase in recognition accuracy, most notably at low
SNRs.

Index Terms— Speech recognition, Robustness, Redundancy

1. INTRODUCTION

Automatic speech recognition (ASR) performance degrades substan-
tially when speech is corrupted by background noise that was not
seen during training. Missing Data Techniques (MDTs) provide a
powerful way to mitigate the impact of both stationary and non-
stationary noise for a wide range of Signal-to-Noise (SNR) ratios [1;
2]. The general idea behind MDT is that it is possible to estimate
−prior to decoding− which spectro-temporal elements of the acous-
tic representations are reliable (i.e., dominated by speech) and which
are unreliable (i.e., dominated by background noise). These relia-
bility estimates, referred to as a spectrographic mask, can then be
used to treat reliable and unreliable features differently, for instance
for replacing the unreliable features by clean speech estimates (i.e.
missing data imputation).

Most missing data imputation methods work on a frame-by-
frame basis (i.e. strictly local in time). At low SNRs (≤ 0 dB) a
substantial number of frames may contain few, if any, reliable fea-
tures. Providing clean speech estimates for these frames is difficult
and hence ASR performance at low SNRs is severely reduced. In [3;
4], we introduced a new missing data imputation method, sparse
imputation, to address this issue. Sparse imputation uses a time win-
dow which is (much) wider than a single frame. The method works
by finding a sparse representation of the reliable features of an un-
known word in an overcomplete basis of noise-free example words.
The projection of these sparse representations in the basis is then
used to provide clean speech estimates to replace the unreliable fea-
tures.

In [3; 4] we showed that using the sparse imputation method
significantly improved recognition accuracies even at low SNRs pro-

vided the number of mask estimation errors is sufficiently low. How-
ever, in practical settings, especially at low SNRs, missing data
mask estimation errors are unavoidable. Previous studies [5; 6;
7] have shown that the influence of mask estimation errors can be
reduced when the binary reliability score is replaced by the proba-
bility that a spectral component is reliable: Soft (or fuzzy) masks.
In this paper we will present an extension to the sparse imputation
method which enables it to use soft masks. The goal of this paper is
to explore to what extent recognition accuracy improves when soft
masks are used in the sparse imputation framework.

The rest of the paper is organized as follows. In Section 2 we
introduce binary mask MDT and the sparse imputation framework.
In Section 3 we extend this framework for use with soft masks. In
Section 4 we compare recognition accuracies between binary masks
and soft masks using isolated digits extracted from AURORA-2. We
discuss the results in Section 5 and we present our conclusions in
Section 6.

2. SPARSE IMPUTATION USING BINARY MASKS

2.1. Sparse representation of speech

In ASR, speech is represented as a spectro-temporal distribution of
acoustic power, a spectrogram. We express the K × T spectro-
gram matrix (with K being the number of frequency bands and T
the number of time frames) of clean speech S as a single vector s of
dimension D = K · T by concatenating T subsequent time frames.
We assume T to be fixed. This can be achieved, for example, by
time-normalizing all utterances we want to process.

As in [3; 4], we consider s as a non-negative linear combination
of exemplar spectrograms an, where n denotes a specific exemplar
(1 ≤ n ≤ NA) in the set of NA available exemplars. We write:

s =

NA∑
n=1

xnan = Ax (1)

with weights xn ≥ 0 ∈ IR, x an NA-dimensional weight vector,
and A = (a1 a2 . . . aNA) a matrix with sizeD ×NA.

Typically, the number of exemplar spectrograms will be much
larger than the dimensionality of the acoustic representation (NA �
D). Therefore, the system of linear equations (1) has no unique so-
lution. Research in the field of compressed sensing [8; 9] has shown,
however, that if x is sparse, x can be determined exactly by solving:

min
x

{ ‖x‖0 } subject to s = Ax (2)
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with ‖.‖0 the l0 zero norm (i.e., the number of nonzero elements).
The combinatorial problem in Eq. 2 is NP-hard and therefore unfea-
sible for practical applications. However, it has been proven that,
with mild conditions on the sparsity of x and the structure of A, x
can be determined [10] by solving:

min
x

{ ‖Ax − s‖2 + λ‖x‖1 } (3)

with a regularization parameter λ and a non-negativity constraint on
x. The resulting vector x is a sparse representation of the clean
speech vector s.

2.2. Binary missing data masks

Assuming noise is additive the spectrogram of noisy speech, denoted
by Y, can be described as the sum of the individual spectrograms of
clean speech S and noise N, i.e., Y = S + N. Elements of Y that
predominantly contain speech or noise energy are distinguished by
introducing a spectrographic mask M. With all spectrograms rep-
resented as K × T dimensional matrices, a mask is also a K × T
matrix. The elements of a binary mask M are either 1, meaning
the corresponding cell of Y is dominated by speech (‘reliable’) or 0,
meaning it is dominated by noise (‘unreliable’ c.q. ‘missing’). Thus,
we write:

M(k, t) =

{
1 def

= reliable if S(k, t)/N(k, t) > θ

0 def
= unreliable otherwise

(4)

with frequency band k (1 ≤ k ≤ K), time frame t (1 ≤ t ≤ T )
and constant threshold θ. If log-spectral energy features are used,
reliable noisy speech coefficients can be used directly as esti-
mates of the clean speech features since log[|S(k, t)+N(k, t)|] =
log[|S(k, t)(1+N(k, t)/S(k, t))|] ≈ log[|S(k, t)|].

In experiments with artificially added noise, the so-called ora-
cle masks can be computed directly using Eq. 4. In realistic situa-
tions, however, the masks must be estimated. In Section 4 we will
use an oracle mask and one estimated mask (i.c. harmonicity mask
[11]). We refer to [12] and the references therein for a more com-
plete overview of mask estimation techniques.

2.3. Imputation

By concatenating subsequent time frames of M, similarly as we did
for the spectrogram Y, we construct a mask vectorm. We consider
an observation vector y derived from the noisy speech spectrogram
Y. We denote yr as the reliable coefficients of y for which the corre-
sponding elements of mask vector m are equal to one. Rather than
solving Eq. 3, we use the reliable yr as an approximation for s and
solve:

min
x

{ ‖Arx − yr‖2 + λ‖x‖1 } (5)

with Ar pertaining to the rows of A for whichm = 1. As suggested
in [13] it is possible to use the sparse representation x obtained from
Eq. 5 to estimate the missing values of y by reconstruction:

ŷ =

{
ŷr = yr

ŷu = Aux
(6)

yielding the estimated clean speech vector ŷ. Au and ŷu pertain
to the rows of A and ŷ for which m = 0. A version of ŷ that is
reshaped into aK×T matrix can be considered a denoised spectro-
gram of the underlying speech signal.

3. SPARSE IMPUTATION USING SOFT MASKS

3.1. Soft missing data masks

We define a soft mask which represents the probability that the clean
speech dominates the background noise as follows:

M(k, t) = P (S(k, t)/N(k, t) > θ) (7)
withM(k, t) now taking continuous values between 0 and 1. If the
value is close to 1, the spectral component has a high probability of
being dominated by speech. A soft mask can be generated directly
using the probabilistic output of machine learning techniques [6], or
by the approach followed in [5; 7], e.g. by the substitution of Eq. 4
in a sigmoid function:

M(k, t) =
1

1 + exp−(S(k,t)/N(k,t)−θ)
(8)

with sigmoid center θ.

3.2. Imputation

In order to use the probabilistic information provided by the soft
mask we need to modify the optimization problem described in
Eq. 5. We propose to do this by carrying out a weighted norm mini-
mization instead:

min
x

{‖WAx −Wy‖2 + λ‖x‖1} (9)

with W a diagonal matrix of which the elements are determined di-
rectly by the soft missing data maskM. The weights on the diagonal
are given by using the mask vector representation m: diag(W) =
m. After recovering the sparse representation x, the clean speech is
estimated as:

ŷ = Ax (10)
Using a binary mask is equivalent to usingW as a row selector pick-
ing only those rows of A and y that are assumed to contain reliable
data. In the case of a soft mask the weights on the diagonal influence
the reconstruction error allowed for each spectrographic element.

4. EXPERIMENTS

In order to explore to what extent using soft masks improves recog-
nition accuracy in the sparse imputation framework, we compare
digit recognition accuracies obtained with binary masks (generated
using Eq. 4) and soft masks (generated using the sigmoid function
described in Eq. 8). Two different mask generation techniques are
studied, viz. the oracle mask and the harmonicity mask [11]. The
oracle mask gives us an upper bound on the recognition accuracy
that can be obtained with the sparse imputation method. The har-
monicity mask serves as an example of a mask that is obtained when
no a priori information about the clean speech signal is available.

4.1. Experimental setup

In this paper, we study a single-digit recognition/classification task
using speech data from the AURORA-2 corpus. The single-digit
speech data was created by extracting individual digits from the ut-
terances in the AURORA-2 corpus [14] using the segmentation in-
formation obtained from a forced alignment of the clean speech ut-
terances with the reference transcription. We used the segments from
test set A, which comprises 1 clean and 24 noisy subsets, with four
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Fig. 1. The figure shows AURORA-2 recognition accuracies for binary and
soft sparse imputation using the oracle mask. The range of the vertical axis is
[90, 100]. The vertical bars around the data points indicate 95% confidence
intervals
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Fig. 2. The figure shows AURORA-2 recognition accuracies for binary
and soft sparse imputation using the harmonicity mask. The range of the
vertical axis is [20, 100]. The vertical bars around the data points indicate
95% confidence intervals.

.

noise types (subway, car, babble, exhibition hall) at six SNR values,
SNR= 20, 15, 10, 5, 0,−5 dB to evaluate recognition accuracy of
the sparse imputation method as a function of SNR and mask type.
Recognition accuracies were averaged over the four noise types, re-
sulting in 13176 test digits per SNR condition.

Following [3; 4] we converted the acoustic feature representa-
tions to a time normalized representation (a fixed number of acous-
tic feature frames) using spline interpolation. In our experiment we
used 35 time frames per word i.e., the mean number of time frames
per word in the training set. Comparison with previously reported
recognition accuracies of AURORA-2 clean speech (cf. [7] in which
the same decoder was used as in the current study), shows that the
recognition accuracies of the clean speech test set have not decreased
because of the normalization procedure.

For the computation of the harmonicity mask the noisy speech
signal was first decomposed into a harmonic and a random part using
the procedure in [11]. Next, the harmonic energy was used as an
estimator of the clean speech energy and the random residual as an
estimator for the noise energy of the speech signal, for use in Eqs. 4
and 8. Following [11; 3] we have chosen 20 log10(θ)=-3 dB for the
oracle mask and -9 dB for the harmonicity mask in Eqs. 4 and 8.

The sparse imputation method was implemented in MAT-
LAB. The l1minimization was carried out using the LARS algo-
rithm [15] and implemented as part of the SparseLab toolbox
(www.sparselab.stanford.edu).

For recognition we used a MATLAB implementation of the au-
tomatic speech recognition system described in [16]. Acoustic fea-
ture vectors of the isolated digits consisted of mel frequency log
power spectra (23 bands with center frequencies starting at 100
Hz). After imputation of the missing (static) acoustic features, delta
and delta-delta coefficients were calculated on these individual dig-
its. During decoding the acoustic representations are converted to
PROSPECT features, an alternative feature representation that al-
lows the combination of missing data processing in the spectral do-
main with the attractive properties of cepstral coefficients [16]. As
in [16] we trained 11 whole-word models with 16 states per word,
as well as two silence words with 1 and 3 states respectively, using
the AURORA-2 clean speech train set.

4.2. Oracle mask experiment

The oracle mask results shown in Fig. 1 indicate that the sparse im-
putation method using soft masks achieves higher recognition accu-
racies at SNRs 0 and−5 dB than when using binary masks. At SNR
−5 dB, the soft imputation method has an accuracy of 97.5%, 5.5%
higher than the 92% obtained with binary masks. Accuracy of the
soft imputation method at SNRs > 0 dB are comparable to those
obtained using a binary mask, except for clean speech, which has
slightly lower recognition accuracies when using soft masks.

4.3. Harmonicity mask experiment

The harmonicity mask results displayed in Fig. 2 show that our
sparse imputation method also achieves higher recognition accura-
cies with realistic soft masks. The difference in recognition accu-
racy increases at lower SNRs: At SNR −5 dB, the soft imputation
method has an accuracy of 33%, 6% points higher than the 27%
obtained by the sparse imputation method using binary masks.

5. DISCUSSION

The results from both experiments indicate that the use of soft masks
increases the recognition accuracy obtained with the sparse impu-
tation technique. The recognition results obtained with soft oracle
masks (97.5% at SNR −5 dB) indicate that the sparse imputation
method can deliver excellent noise robust single digit recognition
results, if the mask can be properly estimated.

The improvements in recognition accuracy obtained using soft
masks not withstanding, there remains a substantial gap between the
recognition accuracies obtained with oracle (ideal) and harmonic-
ity (estimated) masks at SNRs < 15 dB. As the SNR decreases
it becomes increasingly more difficult for the harmonicity mask to
distinguish between reliable and unreliable spectral features. The
detection of harmonic components, which are always treated as re-
liable, depends on accurate pitch detection, a process that is volatile
at low SNR values. In addition, the harmonicity mask may not al-
ways treat noises with a harmonic structure, such as babble noise,
correctly. Thus, there is a clear need for developing more powerful
mask estimation methods.
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The slight and non-significant drop in recognition accuracy of
the soft masking technique on clean speech observed when using
the oracle mask is due to (small) reconstruction errors in reliable
features. When using the binary masks reliable features are copied
from the input, while in the current implementation of the soft mask-
ing framework all features are replaced by clean speech estimates.
Since Eq. 5 minimizes the reconstruction error rather than enforc-
ing exact reconstruction, the reconstructed spectrogram might not
be exactly identical to the observed spectrogram, even if all features
have a high probability of being reliable. This might occasionally
lead to recognition errors. The drop in accuracies for clean speech
could therefore be avoided by not using clean speech estimates for
spectro-temporal elements which have very high probability of being
reliable.

The improvement found when using soft masks can be under-
stood from the nature of the minimization carried out in Eqs. 5 and
9. When using a binary mask, cells may be occasionally labeled reli-
able even though the clean speech energy and noise energy are very
close. In this situation the assumption that the reliable cells are good
estimators for clean speech may be less than ideal. This situation
could be avoided by changing the threshold θ in Eq. 4. However,
in [3] we showed that this approach reduces the number of reliable
elements in yr in Eq. 5 which hurts the imputation as well: If the
number of reliable elements in yr gets too low, there is not enough
information to uniquely determine the sparse representationx. In the
soft sparse imputation framework, however, this situation is handled
differently: Features are used regardless whether the speech energy
exceeds the noise energy or not. The influence they may exert on
the sparse representation that is found, is controlled by weights. For
features of which the clean speech energy and the noise energy are
very close, the assigned weights will be close to 0.5. As a result, the
influence of individual features will be gradually reduced and not
abruptly switched on or off as in the binary mask case. Thus the soft
mask sparse imputation technique is more robust, especially when
noise energy rivals clean speech energy.

The sparse imputation approach presented in this paper can be
extended to connected digit and continuous speech recognition. One
option that we are investigating is imputation in a sliding time win-
dow (cf. [17]).

6. CONCLUSIONS

We have proposed an extension to our previous MDT-technique for
binary masks so that it can be applied with soft masks. We have
tested the recognition accuracies obtained with the soft masking
technique using both ideal (oracle) and estimated masks on single
digits extracted from the AURORA-2 corpus. While the results
showed there remains a substantial performance gap between oracle
and harmonicity mask recognition accuracies, we have demonstrated
that the noise robustness of the sparse imputation method is further
improved by using soft masks instead of binary masks. Our isolated
digit recognition experiments have shown an increase of up to 6%
absolute in word recognition accuracy at SNR −5 dB. By using soft
masks the influence of mask estimation errors is diminished and the
influence of cells more resembling clean speech is increased, leading
to increased performance both when oracle masks and when realistic
masks are used.

Future work will address more advanced missing data masks
based on machine learning techniques. In addition, we are inves-
tigating techniques for generalizing the soft mask sparse imputation
technique to continuous speech recognition.
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