
ROBUST SPEECH RECOGNITION BASED ON STRUCTURED MODELING, IRRELEVANT
VARIABILITY NORMALIZATION AND UNSUPERVISED ONLINE ADAPTATION

Qiang HUO1, Donglai ZHU2

1Microsoft Research Asia, Beijing, China
2Institute for Infocomm Research, Singapore

(E-mails: qianghuo@microsoft.com, dzhu@i2r.a-star.edu.sg)

ABSTRACT
We present a new approach to robust speech recognition based on
structured modeling, irrelevant variability normalization (IVN) and
unsupervised online adaptation (OLA). In offline training stage, a set
of generic HMMs for basic speech units relevant to phonetic classi-
fication is trained along with several sets of feature transforms with
different degrees of freedom by using a maximum likelihood (ML)
IVN-based training strategy. In recognition stage, after a first-pass
recognition, the most appropriate set of feature transforms is iden-
tified and adapted under ML criterion by using the unknown utter-
ance itself, which is recognized again to achieve better performance
by using the adapted feature transforms and the pre-trained generic
HMMs. The effectiveness of the proposed approach is confirmed by
evaluation experiments on Finnish Aurora3 database.

Index Terms— robust speech recognition, feature transforma-
tion, irrelevant variability normalization, online adaptation.

1. INTRODUCTION

In the past several years, we’ve been studying several approaches to
robust automatic speech recognition (ASR) based on three key con-
cepts, namely structured modeling, irrelevant variability normaliza-
tion (IVN) and unsupervised online adaptation (OLA) (e.g., [9, 10,
11, 7, 6, 14, 15]). In structured modeling of a basic speech unit,
“hidden” speech information (denoted as a feature vector sequence
X = {xt}) relevant to phonetic classification is modeled by a tra-
ditional Gaussian-mixture continuous density hidden Markov model
(CDHMM) (referred to as generic CDHMM hereinafter), while fac-
tors irrelevant to phonetic classification are taken care of by an aux-
iliary module. More specifically, given an utterance with observed
feature vector sequence Y = {yt}, a specific label qt can be iden-
tified for each D-dimensional feature vector yt by an appropriate
labeling procedure. Given qt, one of the possible mapping functions
(a.k.a. feature transforms), g(qt)(·), is selected, which characterizes
the relationship between xt and yt, and handles possible “distor-
tions” caused by factors irrelevant to phonetic classification. The set
of feature transforms (FTs), {g(f)(·); f = 1, · · · , F}, is shared by
all the basic speech units, which enables efficient and effective un-
supervised OLA in recognition stage. Let Λ = {λ} denote the set of
generic CDHMMs as well as their model parameters, and Θ denote
the set of parameters for F FTs. An IVN-based training procedure
can then be designed to estimate Λ and Θ from a large amount of
diversified training data, Y = {Yi}I

i=1, where Yi is a sequence of
feature vectors of the ith training utterance. In recognition stage, the
parameters of the auxiliary module, Θ, can be updated via unsuper-
vised OLA by using the unknown utterance itself, which is recog-
nized again to achieve better performance by using the compensated

models composed from the generic CDHMMs and the adapted aux-
iliary module.

Over the years, we have studied several forms of feature trans-
formation with different degrees of flexibility. Some of them (e.g.,
[10, 11, 6, 14]) can be implemented in a pure feature-compensation
mode during recognition stage without change of decoder, there-
fore are quite efficient even for large vocabulary continuous speech
recognition (LVCSR) tasks; while approaches in e.g., [9, 7] work in a
pure model-compensation mode during recognition stage, therefore
are computationally more expensive for LVCSR tasks. Yet the ap-
proach in [15] can be implemented in a hybrid mode, where each
frame of feature vector is still subject to a linear transformation,
while the decoder need be changed slightly by including an appropri-
ate “Jacobian” term when evaluating the probability density function
(PDF) value for each Gaussian component in CDHMMs, therefore
its computational complexity lies between the above two sets of ap-
proaches. In terms of the effectiveness of the above approaches, we
observed that none of them prevails in all possible training-testing
conditions as we evaluated on Finnish Aurora3 task [1]. It is there-
fore well-motivated to develop new approaches which can take ad-
vantage of the strengths of the above different approaches. In this
paper we propose several such new approaches to robust ASR.

The rest of the paper is organized as follows. In Section 2, we
present our new approaches. In Section 3, we report experimental
results. Finally, we conclude the paper in Section 4.

2. OUR NEW APPROACHES

2.1. Multiple Types of Feature Transforms

Given the set of training data Y , suppose that they can be partitioned
into E “acoustic conditions”, each characterized by a Gaussian-
mixture model (GMM):

p(y|e) =
K∑

k=1

p(k|e)p(y|k, e) =

K∑

k=1

p(k|e)N (y; ξ
(e)
k , R

(e)
k )

where e is the index of acoustic condition class, N (·; ξ, R) is a nor-
mal distribution with D-dimensional mean vector ξ and diagonal co-
variance matrix R. Readers are referred to [12] for the approach we
used for the automatic clustering of acoustic conditions from training
data Y , the labeling of an utterance Y (in both training and recogni-
tion) to a specific acoustic condition, and the estimation of the above
model parameters.

In this paper, we study the following three forms of FT func-
tions. The first one (referred to as FT3) is defined as follows [6]:

x̂ � F3(y; Θ(e)) = A(e)y + b(e) , (1)
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where Θ(e) = {A(e), b(e)} represents the trainable parameters of
the transformation, and e denotes the corresponding acoustic con-
dition to which y belongs. In this case, qt = e, F = E, and
xt = g(qt)(yt) = A(e)yt + b(e).

The second FT function (referred to as FT5) is defined as [6]

x̂ � F5(y; Θ(e)) = A(e)y + b
(e)
k , (2)

where, for the acoustic condition e which y belongs to,

k = arg max
l=1,...,K

p(l|y, e) (3)

with

p(l|y, e) =
p(l|e)p(y|l, e)

∑K
j=1 p(j|e)p(y|j, e) ,

and Θ(e) = {A(e), b
(e)
l , l = 1, . . . , K}. In this case, qt = (e, k),

F = E × K, and xt = g(qt)(yt) = A(e)yt + b
(e)
k .

The third FT function (referred to as FT6) is defined as [15]:

x̂ � F6(y; Θ(e)) = A
(e)
k y + b

(e)
k , (4)

where Θ(e) = {A(e)
l , b

(e)
l ; l = 1, . . . , K}, and k is calculated by

using Eq. (3). In this case, qt = (e, k), F = E × K, and xt =

g(qt)(yt) = A
(e)
k yt + b

(e)
k .

In the above equations, A(e) or A
(e)
k is a nonsingular D × D

matrix, and b(e) or b
(e)
k is a D-dimensional vector. In the following

three subsections, we present three new approaches, respectively.

2.2. Approach-1: Parallel Decoding with Multiple Systems

In training stage, do ML-IVN training using each type of the above
mentioned transforms, and obtain

• the set of FT3 transforms and the corresponding set of FT3-
based generic CDHMMs [6];

• the set of FT5 transforms and the corresponding set of FT5-
based generic CDHMMs [6];

• the set of FT6 transforms and the corresponding set of FT6-
based generic CDHMMs [15].

Let μsm = [μsm1, · · · , μsmD]T denote the D-dimensional mean
vector, and Σsm = diag{σ2

sm1, · · · , σ2
smD} denote the diagonal

covariance matrix for Gaussian component m in state s of generic
CDHMMs.

The recognition procedure is as follows:

• Step 1: Given an unknown utterance Y , do parallel decod-
ing by using FT3, FT5, and FT6 (as trained above) and the
corresponding sets of generic CDHMMs to obtain the “first-
pass” recognition results, R1(FT3), R1(FT5), R1(FT6), re-
spectively. As a by-product, we also have the corresponding
likelihood scores, L1(FT3), L1(FT5), L1(FT6), respectively.
Pick up the hypothesis which gives the highest likelihood, and
determine which form of transforms and which set of generic
CDHMMs are used in OLA.

• Step 2: Given the recognition result, the form of transforms,
and the set of generic CDHMMs, do OLA to update b(e) or

b
(e)
k using the corresponding IVN-trained transforms as initial

values. The updating formula of b(e) for FT3 is as follows:

b
(e)
d =

∑
t,s,m δ[e, qt]ζt(s, m)(μsmd − A

(e)
d · yt)/σ2

smd∑
t,s,m δ[e, qt]ζt(s, m)/σ2

smd

,

(5)

where δ[·, ·] is a Kronecker delta function, A
(e)
d is the dth

row of A(e), and ζt(s, m) is the occupation probability of
Gaussian component m in state s of CDHMMs, at time t of
the current compensated observation x̂t = F3(yt; Θ

(e)).

The updating formula of b
(e)
k for FT5 is as follows:

b
(e)
kd =

∑
t,s,m δ[(e, k), qt]ζt(s, m)(μsmd − A

(e)
d · yt)/σ2

smd∑
t,s,m δ[(e, k), qt]ζt(s, m)/σ2

smd

,

(6)

where A
(e)
d is the dth row of A(e), and ζt(s, m) is the oc-

cupation probability of Gaussian component m in state s of
CDHMMs, at time t of the current compensated observation
x̂t = F5(yt; Θ

(e)).

The updating formula of b
(e)
k for FT6 is as follows:

b
(e)
kd =

∑
t,s,m δ[(e, k), qt]ζt(s, m)(μsmd − A

(e)
kd · yt)/σ2

smd∑
t,s,m δ[(e, k), qt]ζt(s, m)/σ2

smd

,

(7)

where A
(e)
kd is the dth row of A

(e)
k . Note that ζt(s, m) is cal-

culated by a forward-backward procedure with the PDF value
for each frame of observation evaluated as follows:

p(y|Λ, Θ) = N (F6(y; Θ(e)); μsm, Σsm)| det(A
(e)
k )| , (8)

where det(A
(e)
k ) is the determinant of matrix A

(e)
k .

• Step 3: Do new decoding using the updated transforms and
the set of generic CDHMMs to obtain new recognition result.

• Step 4: Steps 2 and 3 can be repeated until a pre-specified
criterion is satisfied (e.g., a fixed number of cycles).

2.3. Approach-2: Parallel Decoding with Multiple Types of Fea-
ture Transforms and Single Set of Generic CDHMMs

The training procedure of this approach is as follows:

• Step 1: Do ML-IVN training using FT6 as described in [15],
and obtain a set of FT6 transforms, and a set of FT6-based
generic CDHMMs.

• Step 2: Fix FT6-based generic CDHMMs, estimate the set of
FT3 transforms and the set of FT5 transforms using ML-IVN
training as follows:

– Step 2-1: Use FT6 to transform feature vectors, calcu-
late the corresponding occupation probabilities condi-
tioned on FT6-based generic CDHMMs; Initialize A(e)

as identity matrix and b(e) (for FT3) or b
(e)
k (for FT5)

as zero bias vector; Re-estimate A(e) and b(e) (for FT3)

or b
(e)
k (for FT5) as described in [6].

– Step 2-2: Given the current estimate of A(e) and b(e)

(for FT3) or b
(e)
k (for FT5), and the FT6-based generic

CDHMMs, do standard updating as described in [6].

– Step 2-3: Repeat Step 2-2 if necessary (in our experi-
ments, we skipped this step).

The recognition procedure of this approach is as follows:

• Step 1: Given an unknown utterance Y , do parallel decod-
ing by using FT3, FT5, and FT6 (as trained above) and the
common set of FT6-based generic CDHMMs to obtain the
“first-pass” recognition results, R1(FT3), R1(FT5), R1(FT6),
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respectively. As a by-product, we also have the corresponding
likelihood scores, L1(FT3), L1(FT5), L1(FT6), respectively.
Pick up the hypothesis which gives the highest likelihood, and
determine which form of transforms is used in OLA.

• Step 2: Given the recognition result and the form of trans-

forms, do OLA to update b(e) (for FT3) or b
(e)
k (for FT5 and

FT6) using the corresponding IVN-trained transforms as ini-
tial values. The updating formulas are the same as Eqs. (5) ∼
(7).

• Step 3: Do new decoding using the updated transforms and
the set of FT6-based generic CDHMMs to obtain new recog-
nition result.

• Step 4: Steps 2 and 3 can be repeated until a pre-specified
criterion is satisfied (e.g., a fixed number of cycles).

2.4. Approach-3: Speeding Up Approach-2 via Lattice Re-
scoring

The training procedure of this approach is the same as Approach-2.
In order to reduce recognition time, a new recognition procedure is
proposed as follows:

• Step 1: Given an unknown utterance Y ,

– Do decoding by using FT5 (as trained above) and the
common set of FT6-based generic CDHMMs to obtain
the “first-pass” recognition results, R1(FT5), the cor-
responding likelihood score, L1(FT5), and a lattice of
recognition results, Lattice(FT5).

– Given Lattice(FT5), do lattice re-scoring by using FT3
and FT6 (as trained above) to obtain the “first-pass”
re-scoring results, R1(FT3) and R1(FT6), respectively.
As a by-product, we also have the corresponding like-
lihood scores, L1(FT3) and L1(FT6), respectively.

– Pick up the hypothesis which gives the highest likeli-
hood, and determine which form of transforms is used
in OLA.

• Step 2: The same as Step 2 of the recognition procedure of
Approach-2.

• Step 3: Given Lattice(FT5), do new decoding via lattice re-
scoring using the updated transforms and the set of FT6-based
generic CDHMMs to obtain new recognition result.

• Step 4: Steps 2 and 3 can be repeated until a pre-specified
criterion is satisfied (e.g., a fixed number of cycles).

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

We use Finnish Aurora3 database [1] to verify our algorithms. Au-
rora3 contains utterances of connected digits that were recorded by
using both close-talking (CT) and hands-free (HF) microphones in
cars under several driving conditions to reflect some realistic scenar-
ios for typical in-vehicle ASR applications. There are roughly three
conditions: quiet, low noise, and high noise. The database is divided
into following three subsets according to matching degree between
training data and test data:

• Well-Matched (WM) condition: Both training and testing
data include utterances recorded by both CT and HF micro-
phones from all conditions;

Table 1. Number of testing utterances that use each of three forms
of feature transform for Approach-1 and Approach-2 respectively.

Approaches Conditions FT3 FT5 FT6

WM 0 8 1312
Approach-1 MM 0 27 221

HM 7 425 64

WM 0 8 1312
Approach-2 MM 1 34 213

HM 9 473 14

• Medium-Mismatched (MM) condition: Training data in-
cludes utterances recorded by HF microphone in the quiet
and low noise conditions. Testing data includes utterances
recorded by HF microphone in the high noise condition;

• High-Mismatched (HM) condition: Training data includes
utterances recorded by CT microphone from all conditions.
Testing data includes utterances recorded by HF microphone
in the low noise and high noise conditions.

Therefore, the MM condition simulates mainly the mismatch caused
by a noisy environment due to different driving speeds and possible
background music. The HM condition simulates mainly the mis-
match caused by different transducers.

In our experiments, the ETSI Advanced Front-End (AFE) as de-
scribed in [2] is used for feature extraction from a speech utterance.
A feature vector sequence is extracted from the input speech utter-
ance via a sequence of processing modules that include noise reduc-
tion, waveform processing, cepstrum calculation, blind equalization,
and “server feature processing”. Each frame of feature vector has
39 features that consists of 12 MFCCs (C1 to C12), a combined log
energy and C0 term, and their first and second order derivatives. Al-
though all the feature vectors are computed from a given speech ut-
terance, the feature vectors that are sent to the speech recognizer and
the training module are those corresponding to speech frames, as de-
tected by a VAD module described in Annex A of [2]. In FT-based
experiments, all the training data are clustered into 8 different acous-
tic conditions (i.e. E = 8), of which each is modeled by a GMM
consisting of 32 Gaussian components (i.e. K = 32).

Each digit is modeled as a whole-word left-to-right CDHMM
with 16 emitting states, 3 Gaussian mixture components with diago-
nal covariance matrices per state. Besides, two pause models, “sil”
and “sp”, are created to model the silence before/after the digit string
and the short pause between any two digits, respectively. The “sil”
model is a 3-emitting state CDHMM with a flexible transition struc-
ture as described in [5]. Each state is modeled by a mixture of 6
Gaussian components with diagonal covariance matrices. The “sp”
model consists of 2 dummy states and a single emitting state which
is tied with the middle state of “sil”. During recognition, an utter-
ance can be modeled by any sequence of digits with the possibility
of a “sil” model at the beginning and at the end and a “sp” model be-
tween any two digits. For lattice generation in Step 1 of Approach-3,
5 tokens per CDHMM state are used [13].

3.2. Experimental Results

Table 2 summarizes a comparison of word error rates (WERs in %)
of following 12 systems:

• CDHMM Baseline: a system trained from multi-condition
training data using ETSI-AFE;

• Stochastic-Matching: baseline system plus feature-space
stochastic matching (SM) [8];
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Table 2. Comparison of word error rates (in %) of a CDHMM-based baseline system, a system with feature-space stochastic matching,
a system with unsupervised CMLLR adaptation, several FT-based IVN-trained systems without and with unsupervised online adaptation
(OLA), and systems with three proposed new approaches.

Testing CDHMM Stochastic CMLLR FT3 FT5 FT6 FT3 FT5 FT6 New Approaches
Conditions Baseline Matching OLA IVN IVN IVN OLA OLA OLA 1 2 3

WM(×40%) 3.95 3.65 3.60 3.08 2.92 2.46 2.62 2.74 2.26 2.26 2.05 2.08

MM(×35%) 19.70 16.48 14.36 16.48 16.48 15.05 12.52 14.57 13.68 13.68 12.31 12.31

HM(×25%) 14.28 11.27 10.39 15.37 16.61 21.70 12.16 12.72 16.50 12.72 9.93 10.57

Average 12.05 10.05 9.06 10.84 11.09 11.68 8.47 9.38 9.82 8.87 7.61 7.78

• CMLLR-OLA: baseline system plus unsupervised CMLLR
adaptation (e.g. [3, 4]);

• FT3/5/6-IVN: three IVN-trained systems based on different
FTs and without unsupervised OLA [6, 15];

• FT3/5/6-OLA: three IVN-trained systems based on different
FTs and with unsupervised OLA [14];

• Approach-1/2/3: three systems based on three proposed ap-
proaches, respectively.

For each testing utterance, a global diagonal transformation matrix
and a bias vector are estimated in CMLLR adaptation, while a bias
vector is estimated in SM approach. In all the unsupervised OLA
experiments, two adaptation cycles are performed. From results in
Table 2, we make the following observations and discussions:

• When representative yet diversified training data (i.e. in
WM condition) are available, all FT-based IVN training ap-
proaches help reduce recognition errors. More flexible the
FT function, better the performance. This also explains why
we use FT6 in Step 1 of Approach-2.

• When there exists big mismatch between training and test-
ing conditions (i.e. in HM condition), FT-based IVN train-
ing without OLA may not work, simply because FTs learned
from training data cannot be generalized to testing condition.
More flexible the FT function, worse the performance.

• After the unsupervised OLA of FT parameters, “IVN+OLA”
performs better than “IVN only” for all FT functions and all
“training-testing” conditions. However, no single FT func-
tion prevails in all possible “training-testing” conditions: FT6
performs best for “WM” condition, but worst for “HM” con-
dition; while FT3 performs best for “HM” condition.

• By taking advantage of the strengths of different types of
FTs, Approach-2 is indeed an “all-round” approach which
achieves the best overall performance among the approaches
compared, while Approach-3 achieves slightly degraded
WERs due to the use of lattice re-scoring, but is computa-
tionally more efficient than Approach-2. Table 1 summarizes
the distribution of the number of testing utterances that use
each of three FT forms for Approach-1 and Approach-2 re-
spectively. It is indeed the case that different transforms
are selected for different testing utterances under different
conditions. Using FT5 in first-pass decoding of Approach-3
to generate the lattice for later re-scoring is a good tradeoff
between lattice accuracy and computational complexity.

4. SUMMARY

In this paper, we have studied three new approaches to robust
ASR. The best-performing Approach-2 achieves word error rates of
2.05%, 12.31%, 9.93% for WM, MM and HM conditions on Finnish

Aurora3 task respectively. In comparison with the CDHMM-based
baseline system using ETSI Advanced Front-End, this represents a
relative word error rate reduction of 48.1%, 37.5% and 30.5% re-
spectively. As a future work, we will study how effective the above
approaches are for LVCSR tasks.
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