
USING COLLECTIVE INFORMATION IN SEMI-SUPERVISED LEARNING FOR SPEECH
RECOGNITION

Balakrishnan Varadarajan∗

Johns Hopkins University
3400 North Charles Street

Baltimore, MD 21218
bvarada2@jhu.edu

Dong Yu, Li Deng, Alex Acero

Microsoft Research
One Microsoft Way

Redmond, WA 98052
{dongyu, deng, alexac}@microsoft.com

ABSTRACT

Training accurate acoustic models typically requires a large

amount of transcribed data, which can be expensive to obtain.

In this paper, we describe a novel semi-supervised learning al-

gorithm for automatic speech recognition. The algorithm de-

termines whether a hypothesized transcription should be used

in the training by taking into consideration collective infor-

mation from all utterances available instead of solely based on

the confidence from that utterance itself. It estimates the ex-

pected entropy reduction each utterance and transcription pair

may cause to the whole unlabeled dataset and choose the ones

with the positive gains. We compare our algorithm with exist-

ing confidence-based semi-supervised learning algorithm and

show that the former can consistently outperform the latter

when the same amount of utterances is selected into the train-

ing set. We also indicate that our algorithm may determine

the cutoff-point in a principled way by demonstrating that the

point it finds is very close to the achievable peak point.

Index Terms— Semi-supervised learning, entropy reduc-

tion, lattice, confidence, collective information

1. INTRODUCTION

Training automatic speech recognition (ASR) systems usually

requires a large amount of domain specific transcribed train-

ing data. However, getting transcribed data is usually very

expensive and can be time consuming. On the other hand,

getting un-transcribed data can be as easy as logging the data

into a database. The goal of semi-supervised learning is to

use both the transcribed and un-transcribed data to boost the

performance of the ASR systems.

The application of the semi-supervised learning tech-

niques to the ASR is not new [1, 2, 3, 4, 5]. Typical ap-

proaches used in the past include incremental training and the

generalized expectation maximization (GEM). In the incre-

mental training, the highly confident utterances are combined
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with transcribed utterances to adapt or retrain the recognizer

and then use the adapted recognizer to select the next batch

of utterances. In the GEM all utterances are used but with

different weights determined by the confidence. Note that

both these methods are confidence based. They either select

or highly weight the utterances that have high confidence

scores. Thus the sentences that are more likely to be correct

are chosen to be in the training data. It has been shown that

these approaches have the drawback of reinforcing what the

current model already knows and even reinforcing the errors

and cause divergence [5] if the performance of the current

model is very poor which is typically the case for the real-

world interactive voice response systems (IVR) such as voice

search applications [6].

In this paper, we propose a novel semi-supervised learn-

ing algorithm. Different from the previous approaches, our

algorithm determines whether a hypothesized transcription

should be used in the training by considering the collective

information from all utterances available as opposed to only

looking at its confidence. It estimates the expected entropy

reduction on the unlabelled data set when a particular utter-

ance and its transcription pair are chosen. We are particularly

interested in scenarios where the amount of the transcribed

data is small yielding a poor acoustic model. This is usually

the case when a new application is developed. We compare

our algorithm with confidence-based semi-supervised learn-

ing algorithm using the directory assistance data collected

under the real usage scenarios. We show that our algorithm

can consistently outperform the existing algorithm when the

same amount of utterances is selected into the training set.

We also indicate that our algorithm may determine the cutoff-

point in a principled way by demonstrating that the point it

finds is very close to the achievable peak point.

The rest of the paper is organized as follows. In Section

2, we introduce the criterion used in our new algorithm and

describe the algorithm in detail. In Section 3 we compare our

algorithm with the confidence-based approach empirically us-

ing the directory assistance data. We conclude the paper in

Section 4.
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2. SEMI-SUPERVISED ALGORITHM USING
COLLECTIVE INFORMATION

2.1. Intuition and Criterion

The key problem in semi-supervised learning is to determine

the utterance and transcription pair so that the acoustic model

(AM) trained with these data can be optimized. Since we

have some transcribed data to start with we can train an AM

and use the generated recognizer to hypothesize the most pos-

sible transcriptions that are usually represented as a lattice.

The problem of determining the transcription can thus be re-

duced to selecting a best transcription from the lattice. The

existing algorithms typically use the top hypothesis and de-

termines whether to trust (or use) the hypothesis based on the

confidence score (e.g., posterior probability) of the hypothe-

sis. This is typically fine if the initial AM is of high quality

but is not a good solution when the recognition accuracy and

thus the confidence score of the initial AM are poor.

In this paper, we take a different perspective. We argue

that the quality of the hypothesis should be determined col-

lectively by all the transcribed and un-transcribed utterances

available. Assume three utterances X1, X2, and X3 are very

similar acoustically. The recognition results for X1, and X2,

are P1(A) = 0.8, P1(B) = 0.2, P2(A) = 0.8 and P2(B) =
0.2. The recognition results for X3 is P3(A) = 0.45 and

P3(B) = 0.55. If we only depend on the confidence score and

assume the threshold is 0.5, we would pick B as the transcrip-

tion of the utterance X3 and use it in the training. However,

if we also consider the other two utterances that are acousti-

cally very close to X3, we would more likely to choose A as

the transcription for it or even do not use this utterance at all.

Examine this condition more closely. We have two outcomes

if A is chosen as the transcription of X3. If A is the true tran-

scription, adding it to the training set would increase its own

confusability but decrease the confusability for the utterances

X1 and X2. If B is the true transcription, using A as the tran-

scription would decrease its own confusability but increase

the confusability of the other two utterances. This example

suggests that we may measure whether a hypothesized tran-

scription is appropriate by measuring how it will affect itself

and other utterances.

Since we have the approximated probability of each con-

dition from the recognizer, we may estimate the expected en-

tropy reduction over the whole dataset for each possible hy-

pothesis and use it as the measurement for the hypothesis.

Note that we should not use a hypothesis if it will cause a

negative expected entropy reduction.

Put it formally. Let X1, X2, . . . , Xn be the n candidate

speech utterances. We wish to choose the best transcription

Tj for each utterance Xj such that each selected utterance

along with its suggested transcription will have the maxi-

mum positive expected reduction of entropy in the lattices

L1, L2, . . . , Ln over the whole dataset

E[ΔH(L1, . . . , Ln|Xj , Tj)] ∼=
N∑

i=1

E[ΔH(Li|Xj , Tj)],

where we have used the assumption that utterances are inde-

pendently drawn. Note that transcription Tj selected for ut-

terance Xj may be right or wrong and that is the reason we

optimize the expected (averaged) value of the entropy reduc-

tion.

To simplify the optimization problem, we have chosen to

use the top hypothesis as the best possible transcription for

each utterance at the current stage. The key formula to evalu-

ate in our approach is the expected entropy reduction when a

transcription is chosen for an utterance, which we will ap-

proximate as a function of the distance between the utter-

ances.

We have already stated our key intuition: If two utterances

that are acoustically similar are transcribed differently, that

would result in increasing the entropy. Consider two utter-

ances Xi and Xj . Let Li and Lj be the recognition lattices

obtained with the original AM Θ for these two utterances re-

spectively. Let L̂i be the transcription lattice obtained when

decoding Xi with the AM trained using both the initial train-

ing set and the pair {Xj , Tj} where Tj is a hypothesized tran-

scription, which in the current stage is the best path in the

lattice. Now we can tabulate the confusions that are present

in these lattices.

For simplicity, we tabulate the pair-wise confusions

present in these lattices. This is obtained by comparing

the time-durations of every pair of nodes in the lattices. If

the percentage overlap in the time duration is greater than

a particular threshold, we say that the two nodes are get-

ting confused. Note that the best path through the lattice

is simply a sequence of words that give the highest likeli-

hood. Out of these pair-wise confusions, we pick only those

confusions which have a word/phone from the best path at

the current stage. Let {u1
i , v

1
i },{u2

i , v
2
i },. . .,{uiN

i , viN
i } and

{u1
j , v

1
j },{u2

j , v
2
j },. . .,{ujN

j , vjN

j } be the pair-wise confusions

from the lattice of Li and Lj respectively. Let {b̂1
i ,b̂2

i ,. . .,b̂iN
i }

and {b̂1
j ,b̂2

j ,. . .,b̂jN

j } be the top hypothesis from the lattice Li

and Lj respectively, and {P (u1
i ), P (v1

i )},. . .,{P (uiN
i ), P (viN

i )}
and {P (u1

j ), P (v1
j )},. . .,{P (ujN

j ), P (vjN

j )} be the probabil-

ities of these arcs on the lattices Li and Lj based on the

acoustic model score only, which we will use to compute the

acoustic difference between two given signals.

The units in the pair-wise confusion can be words or

phones. In our experiments, we used the word lattices since

the decoder we have used outputs word lattices. Given the

fact that if {un
i , vn

i } = {um
j , vm

j } and ui is present in the best

path of both the lattices Li and Lj , then there will be an en-

tropy reduction in L′
i which would be related to the distance

between {P (un
i ), P (vn

i )} and {P (um
j ), P (vm

j )}. If ui is in

the best path of Li but vi is in the best path of Lj , there will
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be a rise in entropy. We approximate the entropy reduction

that {Xj , Tj} would cause on Li as

E[ΔHi|j ] ≈ −αHi

iN∑

m=1

jN∑

n=1

e−βd({P (um
i ),P (vm

i )};{P (un
j ),P (vn

j )}

(−1)I(b̂m
i =b̂n

j )

where α and β are related to the training method used and the

existing model, and may be estimated using the initial tran-

scribed training set, and d({P (um
i ), P (vm

i )}; {P (un
j ), P (vn

j )}
is the Kullback–Leibler divergence between the probability

distributions {P (um
i ), P (vm

i )} and {P (un
j ), P (vn

j )}. Note

that we have used the exponential function to approximate the

true effect so that the effect is 1 when the KL-divergence is

0 and the effect is close to 0 when the KL-divergence is very

large. The net entropy change due to putting utterance Xj

with its top hypothesis as the transcription into the training

data is given by

E[ΔHj ] ∼=
N∑

i=1

E[ΔHi|j ] (1)

2.2. Procedure

The algorithm proceeds as follows:

• Step 1: For each of the n candidate utterances, compute

entropies H1, H2, . . . , Hn from the lattice. If Qi is the

set of all paths in the lattice of the ith utterance, the

entropy can be computed as

Hi
∼= −

∑

q∈Qi

pq log(pq) (2)

This can be computed efficiently by doing a single

backward pass. The entropy of the lattice is the entropy

H(S) of the start-node S. If P (u, v) is the probability

of going from node u to node v, the entropy of each

node can be written as

H(u) =
∑

v:P (u,v)>0

P (u, v) (H(v) − log(P (u, v)))

This simplifies the computation of entropy greatly

where there are millions of paths and the computation

is in O(V ) where V is the number of vertices in the

graph.

• Step 2: For each of the candidate utterances (1 ≤ j ≤
N ), compute E[ΔHj ] as in (1).

• Step 3: Pick the utterance (Xĵ) that has the maximum

positive value among E[ΔHj ].

• Step 4: Update entropies for the utterances that are

close to Xĵ using

Ht+1
i

∼= Ht
i − E[ΔHi|ĵ ] (3)

• Step 5: Stop if all the utterances are picked or E[ΔHj ] <
0 for all j, otherwise goto Step 3.

3. EXPERIMENTAL RESULTS

We have evaluated our algorithm using the directory assis-

tance data, which are spontaneous speech collected under

various background noises and channel distortions [6]. The

vocabulary size is about 100K. The 39-dimentional features

used in the experiments were converted with HLDA from

a 52-dimensional feature concatenated with 13-dimention

MFCC, its first, second, and third derivatives. The initial AM

was trained with maximum likelihood (ML) using around

4000 utterances, the candidate set consists of around 30000
utterances, and the test set contains around 10000 utterances.

We compared our algorithm wih the confidence-based ap-

proaches, which augment the training set with the most confi-

dent utterances. In this experiment we have used the posterior

probability as the confidence. We have also tried other con-

fidence measures and achieved similar results. For example

we have observed that the rankings based on the entropy of

the lattice and that obtained based on the posterior probabil-

ity of the most probable path from the lattice are highly cor-

related with a Spearman correlation coefficient between the

two rankings greater than 0.92.In all the experiments we have

conducted, we did not tune the α and β and simply set them

to one.

Our first experiment is to see how well the criterion we

are using is compared with the confidence-based approaches.

In other words, can our criterion do better in selecting the ut-

terances if the same amount of the utterances is selected? To

do this, we used the initial AM to generate the lattices for

the un-transcribed utterances. We then selected 1%, 2%, 5%,

10%, 20%, 40%, 60%, 65%, 70%, 75%, 80%, 85%, 90%,

95%, and 100% of the candidate utterances using different

semi-supervised learning algorithms, combined them with the

initial training set, and retrained the model with the ML crite-

rion. The dotted red curve and the solid blue curve in Figure

1 compares the results obtained with our algorithm and those

with the traditional confidence-based approach.

There are three important observations in this comparison.

First, there is no peak using the confidence-based approach.

Adding new utterances continues to improve the recognition

accuracy. We believe this is due to the fact that the accu-

racy of the initial AM is very low and so the quality of the

top hypothesis and the confidence score is also poor. In other

words, the confidence score does not serve a good indicator

to determine which utterance should be selected, and within

each new batch of the data selected, the benefit from the par-

tially right hypothesis always outweighs the bad effects. Us-

ing our newly developed algorithm, however, we do observe

a peak around 90%. This indicates that our algorithm has bet-

ter ability to rule out bad utterances and transcriptions than

the confidence-based approach.
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Fig. 1. Compare speech recognition accuracies between our

new algorithm and the confidence based approach

Second, not only there is a peak using our new algorithm,

but also that the peak can be approximately estimated. As

we have discussed in Section 2, a negative expected entropy

reduction indicates that adding the utterance might make the

recognizer worse. The cutoff point found by this principled

threshold is 88% and the corresponding accuracy number is

59.1%. The cutoff point found out is very close to the true

peak point shown in the figure.

Third, we can observe that if the same amount of utter-

ances is selected, our algorithm consistently outperforms the

confidence-based approach and the differences are statisti-

cally significant with the significant level of 1%. This is an-

other indication that the criterion and algorithm proposed in

this paper is superior to the confidence-based approach. Note

that at the current stage, we have not yet explored to use the

hypothesis other than the top one and did not tune any of the

parameters used in the algorithm. We believe better results

can be achieved once we integrate all these into the algorithm.

Our algorithm can be integrated into either the incremen-

tal training or the GEM training strategy. To see what per-

formance we may get with the incremental training, we have

retrained the AM with 88% (which is the value automatically

determined by our algorithm) of the hypothesized transcrip-

tion, regenerated the lattices for all the candidate utterances,

determined and selected the new hypothesized transcriptions,

and retrained the AM with the new hypothesizes data. We

achieved 59.32% accuracy, which is 0.2% better than the first

iteration. If we use the whole (100%) candidate set with

true transcriptions, we can obtain the upper bound which is

61.06%. The dotted red curve and the dashed green curve

in Figure 1 compare the results using our proposed approach

with one and two iterations respectively. It can be seen that

the second iteration is slightly better than the first one.

4. SUMMARY AND CONCLUSIONS

We have described a new semi-supervised learning algorithm

for improving acoustic models. The core idea of our algo-

rithm is to determine and select the transcriptions based on

both the utterance itself and acoustically similar other utter-

ances. We approximate the effect an utterance and transcrip-

tion pair will cause on the performance of the whole dataset

with a globally defined expected entropy reduction by using

confusion pairs observed between lattices. The effectiveness

of our algorithm was demonstrated using the directory assis-

tance data recorded under the real usage scenarios. The exper-

iments indicated that our algorithm has better ability to iden-

tify the good hypothesis and utterances to be used for training

the AM and to automatically identify the cutoff point.

There are many areas to improve along this line of re-

search. For example, we have not utilized hypothesis other

than the top one in our current algorithm and experiments,

and the approximation we have made is rather crude. We trib-

ute all these to the future work.
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