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ABSTRACT

A conventional automatic speech recognizer does not perform
well in the presence of noise, while human listeners are able to segre-
gate and recognize speech in noisy conditions. We study a novel fea-
ture based on an auditory periphery model for robust speech recog-
nition. Specifically, gammatone frequency cepstral coefficients are
derived by applying a cepstral analysis on gammatone filterbank re-
sponses. Our evaluations show that the proposed feature performs
considerably better than conventional acoustic features. We further
demonstrate that integrating the proposed feature with a computa-
tional auditory scene analysis system yields promising recognition
performance.

Index Terms— Robust speech recognition, auditory feature,
gammatone frequency cepstral coefficients, computational auditory
scene analysis.

1. INTRODUCTION

In everyday listening conditions, the acoustic input reaching our ears
is often a mixture of multiple concurrent sound sources. While hu-
man listeners are able to segregate and recognize a target signal un-
der such conditions, robust automatic speech recognition remains a
challenging problem [1, 14]. Automatic speech recognizers (ASRs)
are typically trained on clean speech and face the mismatch problem
when tested in the presence of interference.

To tackle this robustness problem, speech enhancement meth-
ods, such as spectral subtraction, have been utilized for robust speech
recognition. These methods tend to perform well when noise is sta-
tionary. RASTA filtering [11] and cepstral mean normalization [14]
have also been widely applied but they are mainly intended for con-
volutive noise. An alternate approach involves the joint decoding of
the speech mixture based on knowledge of all the sources present
in the mixture [8, 9]. These model-based systems rely heavily on
the use of a priori information of noise sources. Hence, they have
limited ability to handle novel interferences.

On the contrary, human listeners are capable of recognizing
speech when input signals are corrupted by noise [6]. Furthermore,
for a cochannel signal that has comparable energies from both talk-
ers, human listeners can readily select and follow one speaker’s
voice [3]. Even in more adverse scenarios such as a cocktail party,
listeners can select and follow the voice of a particular talker as
long as the signal-to-noise ratio (SNR) is not exceedingly low [2].
The human ability in these complex acoustic environments is ac-
counted for by a perceptual process called auditory scene analysis
(ASA) [2]. Inspired by ASA studies, computational auditory scene

analysis (CASA) seeks to segregate target speech from a complex
auditory scene [24]. Such systems have been integrated with ASRs
to perform robust recognition [4, 19, 21].

In CASA research, the gammatone filterbank has been widely
used to transform signals into the time-frequency (T-F) domain [24].
This filterbank was originally designed to model human cochlear fil-
tering [17]. Recently, we have proposed an auditory feature based
on gammatone filtering for robust speaker recognition [20]. We
have found that this auditory feature, namely GFCC (gammatone
frequency cepstral coefficients), performs substantially better than
conventional Mel-frequency cepstral coefficients (MFCCs). In addi-
tion, the auditory feature coupled with CASA-based speech segre-
gation [12] and uncertainty decoding [7] yields significant improve-
ments in robust speaker recognition over features derived by an ad-
vanced front-end feature extraction algorithm, ETSI-AFE [22].

In this paper, we study GFCC for robust speech recognition.
GFCCs are derived by a cepstral analysis from the gammatone fea-
ture (GF) obtained from a bank of gammatone filters. We compare
the proposed feature with MFCCs on a test set with speech-shaped
noise (SSN) [5]. Besides, we also compare GFCC with the percep-
tual linear predictive (PLP) cepstral coefficients [10]. Note that PLP
analysis is also motivated by perceptual models. In addition to SSN,
we evaluate on another test set that includes four noise types from
the Noisex 92 corpus [23]. Finally, based on the GFCC feature, we
explore the idea of incorporating a CASA system [12] that segre-
gates voiced speech from background noise as a front-end processor
for further improvement.

The rest of the paper is organized as follows. Section 2 describes
the auditory feature. Section 3 describes CASA-based speech segre-
gation and robust speech recognition. Evaluations are presented in
Section 4. Section 5 concludes the paper.

2. AUDITORY FEATURES

A standard model for T-F analysis in CASA system involves a bank
of gammatone filters [24]. Gammatone filters are derived from psy-
chophysical observations of the auditory periphery and this filter-
bank is a standard model of cochlear filtering [17]. The impulse
response of a gammatone filter centered at frequency f is:

g(f, t) =

{
ta−1e−2πbt cos(2πft) , t ≥ 0

0 , else
. (1)

t refers to time; a = 4 is the order of the filter; b is the rectangular
bandwidth which increases with the center frequency f . We use a
bank of 128 filters whose center frequency ranges from 50 Hz to

4625978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



8000 Hz. These center frequencies are equally distributed on the
ERB scale [15] and the filters with higher center frequencies respond
to wider frequency ranges.

Note that the filter output retains original sampling frequency.
To obtain a frame rate used in typical speech processing applica-
tions, we down-sample the 128 channel responses to 100 Hz along
the time dimension, resulting in the corresponding frame rate of
100 Hz. The magnitudes of the down-sampled outputs are then
loudness-compressed by a cubic root operation. The resulting re-
sponses Gc[m] form a matrix, representing a T-F decomposition of
the input. m is the frame index and c is the channel index. We call
this T-F representation a cochleagram [24], analogous to the widely
used spectrogram. Note that unlike the linear frequency resolution
of a spectrogram, a cochleagram provides a much higher frequency
resolution at low frequencies than at high frequencies. We base our
subsequent processing on this T-F representation.

We call a time frame of the above cochleagram a GF feature.
Here, a GF vector comprises 128 frequency components. Note that
the dimension of a GF vector is much larger than that of feature
vectors used in a typical speaker recognition system. Additionally,
because of overlap among neighboring filter channels, the gamma-
tone features are largely correlated with each other. Here, we apply
a discrete cosine transform (DCT) [16] to a GF in order to reduce its
dimensionality and de-correlate its components. The resulting coef-
ficients are called GFCCs [20]. Specifically, for frame m, GFCCs
Ci[m] are obtained from GFs Gc[m] as follows:

Ci[m] =

√
2

N

N−1∑
c=0

Gc[m] cos

(
iπ

2N
(2c + 1)

)
, i = 0, ..., N − 1.

(2)
Rigorously speaking, the newly derived features are not cepstral co-
efficients because a cepstral analysis requires a log operation be-
tween the first and the second frequency analysis for the purpose
of deconvolution [16]. Here we regard these features as cepstral co-
efficients because of the functional similarities between the above
transformation and that of a typical cepstral analysis.

After performing inverse DCT of GFCCs, we find that by in-
cluding up to 30 coefficients almost all the GF feature information is
captured while the GFCCs above the 30th are close to 0 numerically.
Fig. 1 illustrates a GFCC transformed GF and a cochleagram using
30 GFCCs. The top plot shows a cochleagram of an utterance. The
middle plot shows a comparison of a GF frame of the top plot and
the resynthesized GF from its 30 GFCCs. The bottom plot presents
the resynthesized cochleagram from the top plot using 30 GFCCs.
As observed from the figure, the 30 lowest order GFCCs retain the
majority information in a 128-dimensional GF. This is due to the
“energy compaction” property of the DCT [16]. Hence, we use this
30-dimensional GFCCs as a feature vector in this paper. The 1st
order coefficient is the summation of all the GF components—it re-
lates to the overall energy of a GF frame and is susceptible to noise
degradation. Thus, we remove C1 from the feature vector. The static
GFCC feature is:

Z[m] =
{

Ci[m]
∣∣∣ i = 2, ..., 30

}
. (3)

Besides, a dynamic feature that is composed of delta coefficients is
calculated to incorporate temporal information. Specifically, a vec-
tor of delta coefficients ZD at time frame m is calculated as

ZD[m] =

W∑
w=1

w

(
Z[m + w] − Z[m − w]

)/
2

W∑
w=1

w2, (4)
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Fig. 1. Illustrations of GF and GFCC.

where w is a neighboring window index; W denotes the half-
window length and it is typically set to 2.

3. SPEECH SEGREGATION AND ROBUST ASR

Under adverse environments, our GFCC feature will be corrupted by
background noise. Previous studies have shown that CASA-based
speech segregation provides robust recognition results [4,19,21]. To
enhance the GFCC feature in noise, we employ a CASA system [12]
that performs voiced speech segregation and estimates a binary T-F
mask.

CASA systems make minimal assumptions about the underlying
noise and have shown significant SNR improvement on segregated
speech under various noisy conditions. Specifically, it performs
voiced speech segregation on a T-F representation derived from
gammatone filterbank filtering and hair-cell transduction. In the low-
frequency range, the system generates homogeneous T-F regions
based on temporal continuity and cross-channel correlation, and
groups them based on periodicity similarity. In the high-frequency
range, the envelope of a filter response fluctuates at the pitch rate
and amplitude modulation rates are used for grouping. In the bi-
nary mask, it labels speech-dominated T-F units as reliable (1) and
noise-dominated units as unreliable (0).

In speech recognition, a pronunciation unit is usually modeled
as a hidden Markov model (HMM) [14]. The feature distribution
within a HMM state is typically modeled as a Gaussian mixture
model (GMM) [14], usually parameterized by diagonal covariance
matrices. A binary T-F mask produced by the CASA system indi-
cates whether a GF component is reliable or not. Accordingly, a
feature vector is partitioned into reliable components and missing
ones. To enhance a corrupted GF, we reconstruct its missing com-
ponents from a speech prior [18]. Specifically, the missing compo-
nents are estimated as the expected value conditioned on the reliable
data [18, 20, 21]. Reconstruction errors are estimated as GF uncer-
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tainties. Enhanced GFs are then transformed into GFCCs using (2),
likewise for uncertainties.

We use an uncertainty decoder [7, 21] to determine the content
of an noisy utterance using enhanced GFCC feature frames. Here,
only the diagonal covariance σ̂2

Z of the DCT transformed GF un-
certainties are used. The non-diagonal covariances are numerically
small and thus dropped from computation. This uncertainty decoder
increases the variances of individual components to account for the
mask estimation errors. Delta uncertainties are derived from GFCC
uncertainties as

σ̂2
D[m] =

W∑
w=1

w2

(
σ̂2

Z [m+w]+σ̂2
Z [m−w]

)/(
2

W∑
w=1

w2

)2

(5)

4. EVALUATIONS

4.1. Evaluations Using Speech-Shaped Noise

We first evaluate the GFCC feature (see Section 2) and the robust
recognition method (see Section 3) on the speech-shaped noise
(SSN) test set of the speech separation and recognition task [5]. The
utterances in the corpus follow a sentence grammar:

$command $color $preposition $letter $number $adverb.

There are 4 word choices each for $command, $color, $preposition
and $adverb, 25 choices for $letter (A-Z except W), and 10 choices
for $number (1-9 and zero). For example, a valid utterance could
be “Place blue at F 2 now”. The possible choices in each posi-
tion are roughly uniformly distributed in the corpus. The training
data consists of a total of 17,000 clean utterances from 34 speak-
ers. The SSN test data is created by mixing clean utterances with
SSN at 4 SNRs: -12 dB, -6 dB, 0 dB and 6 dB. Each SNR condition
contains 600 utterances. For recognition, whole-word HMM-based
speaker-independent models are trained on clean speech. Each word
model comprises 8 states and 32 Gaussian mixtures with diagonal
covariance in each state. For missing data reconstruction, we use
the speech prior model with a mixture of 2,048 Gaussian densities
to reconstruct missing features of GF. The uncertainty decoder also
uses diagonal covariance for uncertainties. During the recognition
process, given estimated uncertainties and clean ASR models, the
uncertainty decoder calculates the likelihood of reconstructed 58-
dimensional GFCC D features and transcribes the speech.

Fig. 2 compares recognition performances of different features.
MFCC D A is the 36-dimensional MFCC feature including delta
and acceleration coefficients (with DC component removed). Sim-
ilarly, PLP D A denotes the 36-dimensional cepstral coefficients
derived by PLP analysis. ETSI D A represents the enhanced 36-
dimensional MFCC feature derived by ETSI-AFE. GFCC D is the
58-dimensional GFCC feature, with deltas included. Enhanced
GFCC D shows the results using feature reconstruction and uncer-
tainty decoding (described in Section 3).

The GFCC feature outperforms the MFCC and the PLP features
across all SNR conditions. There is a considerable advantage of us-
ing GFCC when the noise level is moderate (e.g., at 0 and 6 dB).
Under the clean condition, GFCC is still the best among the three.
Strictly speaking, the above comparison is not entirely fair due to
different feature dimensionalities. However, it has been noted that
additional MFCC coefficients do not improve performance [14]—in
other words, the performance is not expected to improve much if
one increases the feature dimensions of MFCC and PLP in the ex-
periment. We should note that these three features are on noisy data
without enhancement.
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Fig. 2. Evaluation of various features on the SSN test set.

We then compare the enhanced GFCC feature with the ESTI
feature. These two methods enhance features in different ways—the
former utilizes missing data reconstruction coupled with an uncer-
tainty decoder and the latter applies a Wiener filter based denoising
approach. They yield comparable performance as can be observed
in Fig. 2. Nevertheless, we still consider the enhanced GFCC D as
a promising method. Firstly, only voiced speech is currently seg-
regated from a noisy utterance and unvoiced portions totally rely
on reconstruction. This harms the performance and explains why
the enhanced GFCC has the worst result under the clean condition.
Secondly, this method can deal with a more general acoustic back-
ground (even in the presence of another speech) due to the nature of
CASA-based segregation. In fact, it has been successfully applied
to a two-talker speech recognition task [19], in which ESTI fails to
work.

4.2. Evaluations Using Other Noise types

We also experiment under four other non-stationary noisy condi-
tions. They are factory noise, speech babble, destroyer operation
room and F-16 cockpit from the Noisex 92 corpus [23]. Test set is
created by mixing the clean test utterances from the previous SSN
task with the four noise recordings. Mixtures are created at -6 dB, 0
dB, 6 dB and 12 dB SNRs. Thus, we have 600 test utterances from
34 speakers for each of the 16 noisy conditions.

Evaluation results are reported in Table 1. Similar conclusions
are drawn: The GFCC feature performs consistently better than the
MFCC and the PLP features. This feature also outperforms the ETSI
feature at 12 dB. The enhanced GFCC considerably improves the
recognition accuracy under moderate SNR conditions. It also yields
comparable performance to the ETSI feature.

5. CONCLUSIONS

We have investigated a robust feature, GFCC, for speech recogni-
tion, which is derived from an auditory filterbank. Our evaluations
show that the GFCC feature outperforms the MFCC and the PLP fea-
tures. We have further explored the idea of incorporating a CASA
system that performs voiced speech segregation as a front-end for
robust recognition. It is encouraging to observe that our results are
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Table 1. Evaluation of various features on four noisy conditions.
Numbers in the table show recognition accuracy in percentage (%).

Factory -6 dB 0 dB 6 dB 12 dB
MFCC D A 20.39 22.19 35.36 61.31

PLP D A 22.78 30.92 54.61 78.44

ETSI D A 29.75 52.81 76.50 88.00

GFCC D 27.89 47.28 78.28 93.42

Enhanced GFCC D 34.72 59.53 78.08 85.69

Babble -6 dB 0 dB 6 dB 12 dB
MFCC D A 22.81 29.83 47.28 67.97

PLP D A 27.78 40.83 63.61 81.75

ETSI D A 33.61 57.39 80.11 90.39

GFCC D 24.19 41.83 74.03 91.81

Enhanced GFCC D 33.42 55.28 76.94 86.47

Destroyer -6 dB 0 dB 6 dB 12 dB
MFCC D A 20.53 26.19 43.14 67.67

PLP D A 23.14 35.89 62.97 84.17

ETSI D A 34.97 60.47 81.78 90.44

GFCC D 26.11 48.44 78.25 92.78

Enhanced GFCC D 30.53 55.61 77.22 86.47

F16 -6 dB 0 dB 6 dB 12 dB
MFCC D A 19.89 22.11 32.75 59.69

PLP D A 22.50 29.44 49.44 76.19

ETSI D A 28.61 55.92 79.89 90.03

GFCC D 23.14 41.00 70.92 91.86

Enhanced GFCC D 34.36 57.83 76.56 85.36

comparable to those using the ETSI-AFE enhanced feature despite
the fact that only voiced speech is segregated in our method. Future
work that incorporates unvoiced speech segregation [13] will likely
lead to further improvements in ASR performance.
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