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ABSTRACT

Voice Activity Detection systems attempt to discriminate between
voice and other ambient sounds. Most systems use a single micro-
phone approach and rely on training prior to employment. The per-
formance of these systems relies heavily on reverberation and noise
levels. In this paper we present an unsupervised Voice Activity De-
tection system that uses pairs of microphones to discern between a
coherent acoustic source and spatially diffuse noise of low coher-
ence. Measurement of coherency is performed using an information
theoretic metric that integrates means to filter out more effectively
the effect of reverberation and noise. Using extensive experiments,
the performance of the system is investigated. Based on the con-
ditions imposed by the experimental environments it is shown that
the proposed system remains more robust than its counterparts in all
cases.

Index Terms— Speech analysis, Speech processing, Ar-
ray signal processing,Information theory.

1. INTRODUCTION

Voice Activity Detection (VAD) is important in a class of
applications ranging from telecommunications to speech en-
hancement. A VAD system uses at least one microphone to
make recordings and decide on the presence or silence of a
speech source. Performance is generally a function of noise
and reverberation levels as well as the distance between the
source and the microphone.
VAD can be performed using algorithms that require

training prior to employment or simpler systems that oper-
ate without supervision. In supervised systems training is
typically performed using Gaussian mixture models [1]. Un-
avoidably these systems become dependent on the spectral
characteristics of the user and the environmental conditions.
Unsupervised methods are conceptually simpler. They often
assume that there is access to a few seconds where there is
no speech activity in order to initialize the system parame-
ters. The short-term energy of the signal along with a simple
thresholding is one of the signal features used in early VAD
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systems [2]. Recent approaches integrate statistical model-
based features [3] where a likelihood ratio is developed and a
statistical hypothesis test is conducted.
Concepts that originate from information theory have only

been recently considered for VAD. In [4], authors used the
entropy measure to distinguish between speech and silence as
a robust extension to the 3GPP standard. Nevertheless, the
system assumes close-talking microphones and during tests
ignores the effect of reverberation. For increased robustness
VAD measures can be applied on the average value of mul-
tiple recordings from microphones residing at different loca-
tions. Extending the multi-microphone approach, authors in
[5] used phase correlation between a pair of microphones as
the discriminating feature between speech and noise/silence.
The work in this paper is a direct extension of [4] and

[5]. The system uses a multi-microphone approach and a new
coherence measure in order to discern between a coherent
acoustic source and spatially diffuse noise of low coherence.
The coherence measure is a function of the mutual informa-
tion (MI) between pairs of microphones and integrates means
of reducing the effect of reverberation and noise.
In Section II we start by presenting the system model and

the systems used at a later stage for comparison purposes. In
Section III the MI-based VAD system is presented. Section
IV presents the the performance measures used to evaluate
the systems and discusses extensive results from experiments.
Finally, conclusions are drawn in Section V.

2. SYSTEMMODEL

Consider the employment of M microphones in a reverber-
ant and noisy environment. VAD uses at least one of these
microphones to make recordings and decide on the presence
of an acoustic source. VAD is a process that is required to
often operate repeatedly and in real-time using short record-
ings. Thus, data is collected over t frames of L samples
which for the tth frame are converted into the frequency do-
main using anL-point Short Time Fourier Transform (STFT).
This is performed over a set of discrete frequencies ωl with
l = 0, 1, ...L−1. Let the microphones be arranged in P pairs.
The frame generated by the mth microphone (m = 1, 2) of
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the pth pair is then given as:

X
[t]
mp = [Xmp(ω0), Xmp(ω1), . . . , Xmp(ωL−1)], (1)

where p = 1, 2, ...P and

Xmp(ωl) = Amp(ωl)S(ωl) + Nmp(ωl) (2)

in which S(ωl) is the STFT of the source signal, Amp(ωl) is
the room transfer function between the source and the mth

microphone of the pth pair, and Nmp(ωl) is additive white
Gaussian noise which is assumed to be uncorrelated with the
source signal. Since the analysis will be independent of the
time frame we have omitted t from Eq. (2). Thus, we can
also drop t to express frames simply as Xmp. The task then
for any audio-based VAD algorithm is to use only Xmp and
decide on whether the acoustic source is active or not, during
that period of time. The energy of a frame is the typical cri-
terion used to indicate the presence of speech [2]. Neverthe-
less, in [4] authors introduced the use of spectral entropy as
a measure and demonstrated that robustness increases when
compared to energy methods. The use of more than one mi-
crophones in the VAD process adds spatial information to the
domain of our frequency analysis. Thus, using a microphone
array allows the introduction of a method to discern between
a coherent acoustic source and spatially diffuse noise of low
coherence. Such VAD systems assume the sound source to be
in the far-field of the microphones. In [5] authors used phase
correlation between a pair of microphone recordings as the
discriminating feature. This concept can then be extended to
more than one pair of microphones.

3. VAD USINGMUTUAL INFORMATION

The VAD system proposed in this work assumes the record-
ing setup of Sec. 2. Extending the architectures of [4],[5] the
system will use more than one microphones to detect the pres-
ence of speech and MI as the coherence function.
TheMI of two variables is an information theoreticalmea-

sure (function of the entropy measure used in [4]) that repre-
sents the difference between the measured joint entropy of the
two variables (in our case these are the microphone signals)
and their joint entropy if they were independent. Since the mi-
crophones of each pair p reside in different spatial locations,
their corresponding recordings will be delayed with respect
to each other by a relative time delay τp. If we assume that
the microphone recordings exhibit normal distribution then
for any set of frames in any pair p, the MI between the two
microphones is:

IN = −
1

2
ln

det[C(τ)]

det[C11]det[C22]
(3)

where τ is a time delay at which we calculate IN . The joint
covariancematrixC(τ) is a concatenation of framesX1p and

X2p shifted by different amounts in samples:
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where the �{.} operation returns only the real part of its ar-
gument and fs denotes the sampling frequency. Function
D(A, n) shifts the frequency components contained in frame
A by n samples.
If N is chosen to be greater than zero the elements of

C(τ) are themselves matrices. In fact for any value of τ , the
size ofC(τ) is always 2(N+1)×2(N+1). We callN the or-
der of the coherence function. N is really the parameter that
controls the robustness of the VAD against reverberation. In
the above equations and in order to estimate the information
between the microphone signals, we actually use the marginal
MI that considers jointlyN neighboring samples (thus the in-
clusion of delayed versions of the microphone signals). This
way the function of Eq. (3) takes into account the spreading
of information due to reverberation and returns more accurate
estimates. To avoid possible large variations of IN over time
a median filter over a set of estimated values can be used.
Ideally, for a given pair p we would like to calculate IN

at τ = τp. τp is dependent on the source location. In the
forthcoming simulations a VAD decision is made either by
providing this set of delays for all P pairs or estimate it using
a TDE function. We also show how the use of more than one
microphone pairs can improve performance further. In order
to decide the presence or absence of speech during frame t

the value of IN is then compared to a threshold γt. In the
experiments to follow we assume that threshold γt can be ini-
tialized by having access to some frames To where the source
is not active. The initial value of γt is then initialized to be
γo = 1

To

∑To

t=1 I
[t]
N where I

[t]
N denotes the value of Eq. (3)

for time frame t. As in [4] we further keep estimating γt

for each of the later frames in real-time. A fixed threshold
would lead to decreased robustness in varying acoustic envi-
ronments. Thus, at frame t, γt adapts to a possible environ-
ment change as γt = 1

2 (m0(γt, k) + I
[t]
N ) where m0(γt, k)

denotes the median value of the last k values of γt during
which no speech was detected. Again, by using the median
we avoid the effect of sporadicly large variations in the value
of I

[t]
N during frames that were detected as silent. In order

to decide the presence or absence of speech at a given time
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frame the value of I [t]
N is compared to γt. If I

[t]
N > γt then the

system assumes the presence of speech and a binary decision
variable αt is set to 1. If I

[t]
N < γt then αt = 0.

A hangover scheme is important in a real-time VAD sys-
tem since it allows us to filter out false detections among
frames with the correct ones. Suppose for example that for a
relatively long period of time silence is being detected. The
system then detects a single frame where speech is present
and immediately after a series of new frames without speech.
For the examined frame sizes this single speech detection
should be filtered out since speech utterances can not be
that short. Thus, a hangover scheme requires an initial state
and two time constants δ0 and δ1 that determine after which
amount of time we should switch to the no-speech or speech
states respectively. In general, δ1 < δ0 to allow for quick
transition from no-speech to speech state and to restrict the
opposite. This is in line with the fact that speech utterances
are generally highly correlated with time [4].

4. PERFORMANCE ANALYSIS

There are four VAD metrics that are used to compare the sys-
tems in this paper. For their calculation we test the VAD es-
timate at each time frame against the ground truth (annotated
manually), for the total duration of the test signals. The met-
rics are: 1. Mismatch Rate (MR) is the ratio of the incorrect
decisions over the total time of the tested segment, 2. Speech
Detection Error Rate (SDER) is the ratio of incorrect deci-
sions at speech segments over the total time of speech seg-
ments, 3. Non Speech Detection Error Rate (NDER) is the
ratio of incorrect decisions at non speech segments over the
total time of non speech segments, 4. Average Detection Er-
ror Rate (ADER) is the average of SDER and NDER. All
of the above metrics are presented as percentages. The lower
their values, the better the performance of the system.
In this section, we compare the performance of the multi-

microphone MI-based VAD system as presented in Section 3
with the two systems of [5] and [4]. We will refer to these
algorithms as A1, A2 and A3 respectively.
One of the most typical applications of VAD systems is

PC-based video-conferencing. To demonstrate the improve-
ment in robustness when A1 is used we recorded four seg-
ments of ten minutes duration each. This was done with a typ-
ical web-camera [6] (Creative Live Cam Voice) that includes
two microphones, placed 7 cm apart. Recordings involved
four different speakers (two male and two female) speaking
naturally in front of the microphones at a distance of approxi-
mately 1 m. The text read was chosen to have different pauses
between phrases while the recording also included noise con-
tribution from air-conditioning and the PC used, estimated to
result into an SNR of approximately 15 dB. During record-
ings speakers were allowed small movements in front of the
camera. The reverberation time of the room was measured to
be approximately T60 = 0.35 sec.
Parameter γo was estimated by allowing 2 sec of silence

before the first utterance of speech. Additionally, the relative
delay between the two microphones was first estimated using
[7] and then used in the A1 VAD system. Correspondingly,
the algorithm of [8] was used prior to A2. During all tests, fs

was chosen to be 22.05 KHz and L = 4096. The hangover
scheme applied is retained identical for all algorithms with
δ0 = 0.74 sec and δ1 = 0.37 sec. In the case of A3 only one
of the microphones was used.
Tables 1(a)-1(c) show the resulting values for all perfor-

mancemeasureswhen the three examined algorithms are used
upon the video-conferencing audio data. The tables show that
the proposed system remains more robust in detecting speech
for the specific speakers and environmental conditions.
To demonstrate the robustness of the MI-based VAD sys-

temwe also conducted experiments for the scenario of a meet-
ing with far-field recordings. These were performed in the
laboratory of Athens Information Technology (AIT). This is s
typical reverberantmeeting room equipped with microphones
and cameras. An overview of the rooms can be seen in Fig. 1.
A, B, C, D denote the arrays used in our experiments. Fig-
ure 1 also contains the relative geometry of the microphone
arrays. Recordings were conducted in presence of ambient
noise from both air-conditioning and personal computers (re-
sulting in an SNR estimated to be approximately 10 dB).

Fig. 1. Overview of AIT’s laboratory. Microphone-array
topology and geometry is also shown.

A total of four recordings were performed in the labo-
ratory. Each seminar consists of a presentation to a group
of 3 attenders. There exists significant interaction between
the presenter and the audience, with numerous questions and
often a brief discussion amongst participants. This type of
seminar recordings provide data with rich acoustic activity.
A significant number of acoustic events is generated to allow
more meaningful evaluation of the VAD systems. From each
of these seminars two five-minute segments were used. The
choice of segments and their duration was performed by [9].
The data are annotated by humans to provide the speech ac-
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tivity of each segment. These annotations are considered to
be the ground truth for the measurement of the system per-
formance. For A1 and A2 three pairs of microphones from
the 64-channel linear array (denoted as D) and one pair from
each of the other arrays (denoted as A, B, C) were used. An-
alytically, the pairs used are: A2 − A3, B2 − B3, C2 − C3,
D24−D39,D17−D32 andD33−D48. Subscripts denote the
microphone number of the corresponding array. The choice of
pairs (and the corresponding microphone distances) ensures
that far-field assumptions are not violated.
As before TDE algorithms [7] and [8] were used prior to

A1 and A2 respectively. A majority voting scheme amongst
the decision for every pair was used to determine the pres-
ence or absence of speech during time frame t. Tables 2(a)-
2(c) show the resulting values for all performance measures.
Results indicate that A1 performs better during all segments.
Still the SDER and NDER values indicate that all systems fail
more often during the silent segments of the recordings.

(a) A1

Metric\
Experiment Male 1 Male 2 Female 1 Female 2
MR 16.85 13.38 17.01 17.66
SDER 15.48 12.12 16.48 17.05
NDER 18.75 15.5 18.21 18.36
ADER 17.11 14.85 17.89 17.99

(b) A2

Metric\
Experiment Male 1 Male 2 Female 1 Female 2
MR 23.75 18.85 23.90 24.82
SDER 21.67 17.02 23.25 23.91
NDER 26.27 21.73 25.58 25.83
ADER 23.99 20.79 25.12 25.35

(c) A3

Metric\
Speaker Male 1 Male 2 Female 1 Female 2

MR 30.57 24.09 30.98 32.15
SDER 28.05 22.14 29.95 30.85
NDER 34.10 28.07 32.84 33.40
ADER 31.10 26.97 32.36 32.40

Table 1. Experimental results for all VAD systems. Results
are shown for different speakers. L = 4096 samples.

5. CONCLUSION

In the present work a novel multi-microphone VAD system
was presented. To discern between an acoustic source and
ambient noise the system uses a information theoretic mea-
sure that integrates means of filtering out reverberation and
noise. Through the use of more than one microphones the
system also utilizes the spatial diversity of sensors placed in
different physical positions. The system requires no training
prior to employment but its performance is subject to TDE
estimators and access to a number of silent frames in order
to initialize the system. Extensive real experiments were per-
formed. A1 remained more robust than any of its counterparts

(a) A1

Metric\
Sem.−Seg. AIT 1-1 AIT 1-2 AIT 2-1 AIT 2-2
MR 28.50 33.49 11.34 19.29
SDER 21.58 23.24 8.07 15.87
NDER 40.20 39.64 29.65 31.26
ADER 30.89 31.44 18.86 23.56

(b) A2

Metric\
Sem.−Seg. AIT 1-1 AIT 1-2 AIT 2-1 AIT 2-2
MR 42.10 49.39 16.61 25.71
SDER 28.53 30.06 9.81 21.21
NDER 51.55 68.20 39.26 45.27
ADER 37.95 41.80 24.47 29.39

(c) A3

Metric\
Sem.−Seg. AIT 1-1 AIT 1-2 AIT 2-1 AIT 2-2
MR 43.09 54.14 37.16 36.04
SDER 33.42 36.22 33.62 24.09
NDER 77.82 79.96 50.74 50.37
ADER 53.66 56.27 42.18 43.53

Table 2. Performance measures for the two segments of each
of the four recordings for all VAD systems.

for all experiments. It is worth noting thatA1 andA2 are sub-
ject to TDE inaccuracies. Thus, exact knowledge of the TDEs
would improve the robustness of these VAD systems further.
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