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ABSTRACT
A new perceptual time varying model for non–stationary 
analysis of speech signals is presented. Some researches 
have already shown that the Time Varying Linear Prediction 
Coding (TVLPC) model that was applied to speech signals 
increases the recognition performance of Automatic Speech 
Recognition (ASR) systems. This improvement has been 
achieved due to the incorporation of the speech dynamics 
information in the model.
Another work, Perceptual Linear Prediction (PLP) analysis 
of speech, has shown that a modified estimation of the Auto 
Correlation Function (ACF) of stationary speech frame 
yields major improvement to the recognition rate. 
The presented model, Perceptual Time Varying Linear 
Prediction (PTVLP) analysis of speech, adopts the 
perceptual concepts, of how to estimate the ACF, into the 
TVLPC model. This research shows that the proposed 
PTVLP model is more accurate, robust to noise and achieves
better recognition rates than PLP and TVLPC over wide 
SNR range.
Index Terms— Auto Regressive, HMM, TVLPC, PLP, PSD

1. INTRODUCTION

The PTVLP model is actually a combination of two well 
known speech analysis models, the Time Varying Linear 
Predictive Coding (TVLPC) ([1] [2]) and the Perceptual 
Linear Predictive (PLP) [3]. In practice, the PTVLP model
adopts the advantages of the PLP into the TVLPC.
Auto Regressive (AR) filtering is widely used in order to 
predict the next sample based on previous samples. During 
the optimization process, for finding the optimal AR filter 
coefficients (in the MMSE sense), an estimation of the Auto 
Correlation Function (ACF), or equivalently, the Power 
Spectrum Density (PSD) of the speech frame, is needed.
This estimation was found to be inconsistent with the 
perception of human hearing (which is considered as the 
upper bound classifier). First, the ACF (or PSD) is estimated 
with equal bin widths around each frequency over the 
analysis band, where the natural human hearing is less 
sensitive to minor frequency derivations as the frequency 
increases. Hence, in order to model better the perception of 
human hearing, the analysis band needs to be divided to 
perceptual sub bands. Second, it was found that the 

perception of human hearing has a different sensitivity to the 
amplitude levels in each such sub band. Therefore, there is a 
need to enhance the amplitudes of the estimated PSD per 
each sub band.
In addition, our AR filter has coefficients that we allow them 
to slightly vary with time in order to earn representation of 
the speech dynamics. Both actions, the perception and the 
time varying, produce better representation of speech and 
therefore increase the recognition rate. The paper is 
organized as follows: Section 2 describes the 
implementation details of the PTVLP model. In section 3, 
experiments results of the model are depicted. Section 4
contains the conclusions.

2. THE PTVLP MODEL

Figure 1 depicts the main stages of the PTVLP:

Figure 1: The PTVLP model

As can be seen in Figure 1, we first estimate the General 
Correlation Function (GCF) of the speech frame. Then, the 
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Generalized PSD (GPSD) of the speech frame is obtained by 
applying Fourier transform to the GCF.
The GPSD is perceptually reformatted to yield the 
Perceptual GPSD (PGPSD). Finally, we substitute the 
Perceptual GCF (PGCF), which is achieved by applying 
inverse Fourier transform to the PGPSD, in the Extended 
Yule – Walker (Normal) equations yielding the PTVLP
coefficients.

2.1. Time Varying Linear Prediction Coding 
As has been stated in [1], the speech frame signal ][ns at 
time n , is expressed as a linear combination of the past P
samples and the inaccessible input ][nu , i.e.,
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A common used constraint on the time varying coefficients,
][nai , is to model them by a linear combination of some 

known basis functions, i.e.,
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Where G denotes   gain  input, )(nf k
denotes the kth basis 

function, 1�Q denotes number of basis functions and ika
are the basis functions weights.
Substituting Equation (2) into (1) will lead to the predictor 
equation:
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The prediction error is:
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The usual used criterion of optimality for the coefficients is 
the minimization of the total squared error, defined as:
(5)
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Minimization of this error with respect to each coefficient, 
ika ,, will lead to set of equations that are called the 

Extended Yule – Walker (Normal) equations:
(6)

��
� �

��������
P

i

Q

k
lklik QlkPjijrjira

1 0
0 ,0,,1]0[][

Where ][mrkl denotes the Generalized Correlation Function 
(GCF) and defined as:
(7) � ���
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We will denote the set of received optimal coefficients, 
}{ ika , as the TVLPC optimal coefficients of the speech 

frame ][ns .

2.2. Estimate Generalized PSD (GPSD)
In order to use the benefits of the perceptual reformations on 
the speech spectrum, we need to obtain the Power Spectrum 
Density (PSD) of the speech frame, ][ns .
It can be seen that the yielded GCF, ][mrkl   (Equation (7)), is 
a correlation function of the speech frame ][ns , multiplied 
by the deterministic basis functions ][nfk and ][nf l .
According to the Weiner – Kchinchin theorem, the PSD of 
signal is the Fourier transform of its autocorrelation 
function. In general, we can define the Generalized PSD 
(GPSD) of a signal as the Fourier transform of its GCF.
Thus, we will denote the GPSD as the Fourier transform of 
the GCF of the signal )(ns :
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Where }{�F denotes the Fourier transform. In the discrete 
case, the Discrete time Fourier Transform (DFT) will 
replace the Fourier transform. Hence:
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Where }{�DFT denotes the Discrete time Fourier transform.
It can be shown that substitution of Equation (7) into 
Equation (9) yields:
(10) � � � �][][][][][ * nfnsDFTnfnsDFTqP lkkl ��

Where * denotes the complex conjugate.
One can see that if both basis functions are equal, 
i.e., ][][][ nfnfnf lk �� , we actually get the PSD 
estimation of ][][ nfns .

2.3. Perceptual Linear Predictive Reformations
Perceptual reformations are applied to the estimated GPSD 
in order to model the perception of the human hearing. 
These perceptual reformations include three main steps that 
are described in the subsections 2.3.1, 2.3.2 and 2.3.3 below.
2.3.1. Critical Band Analysis
The GPSD has to be warped differently along its frequency 
axis because of the fact that the spectral resolution of human 
hearing decreases with frequency beyond about 800Hz. In 
addition, the spectral resolution of the GPSD should be 
reduced in order to simulate the natural hearing system. In 
order to do so, we have used a set of 17 bark – scale 
auditory shape filters and Equation (11) depicts the formal 
warping formula:
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Where:
� )( fPkl

denotes the GPSD of the speech frame when 

using basis functions ][nf k and ][nfl .
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� )( ikl �� is the auditory shaped GPSD.

2.3.2. Equal Loudness Preemphasis
Since the non – equal sensitivity of the human hearing to 
amplitudes at different frequencies, there is a need to 
simulate an equal – loudness curve.
Psycho acoustic experiments have found that such step will 
emphasize the amplitude levels resolution at the frequency 
ranges of 0 - 400Hz and 1200 – 3100Hz.
The formula that was used in order to apply it to the auditory 
shaped GPSD, ))(( fkl �� or formally:
(12) ))(()()( ffEf klkl ����� , Where:
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� ))(( fkl �� denotes the auditory shaped GPSD.
� )( fkl� denotes the loudness preemphasized 

auditory shaped GPSD.

2.3.3. Intensity Loudness Conversion
The final perceptual step is the cubic root amplitude 
compression. It takes the loudness preemphasized auditory 
shaped GPSD and yields the third root of it. This operation 
is an approximation to the Steven’s power – law of hearing 
[3]. It simulates the non – linear relation between the 
intensity of sound and its perceived loudness, formally:
(13) 33.0)()( ffT klkl ��
This step finalizes the perceptual reformations of the GPSD.

)( fTkl actually denotes the Perceptual GPSD (PGPSD) of 
the speech frame and will be used to obtain the Perceptual 
GCF (PGCF) of the speech frame. 
Figure 2 depicts an example of how the perceptual 
reformations affect the GPSD. A 50 msec speech frame, 
sampled at 8 KHz, from the word zero was used. The GPSD
was created by using 1024 points FFT. All GPSDs are 
displayed on dB scale, versus 0 – 4 KHz.

Figure 2: The Perceptual Effect on GPSD from the word 
“Zero” using 2 basis functions "Polynomials"

)( fPkl in each of the subplots denotes the GPSD (flat line).
The high spectral resolution can be easily seen.

)( fkl� denotes the auditory shaped GPSD (line with dots). 
The decreasing of the spectral resolution in comparison to 
the GPSD is well seen.
Finally, )( fTkl , denotes the Perceptual  GPSD (PGPSD)
(line with circles). It holds the Equal Loudness Preemphasis 
and the Intensity Loudness Conversion. It is clearly seen that 

)( fTkl is quiet flatten over the analysis band (simulates the 
Equal Loudness Conversion) and its dynamic range is 
significantly smaller than the GPSD (simulates the Intensity 
Loudness Conversion).

2.4. Perceptual Generalized Correlation Function 
Prior to the obtaining of the PTVLP features, we need to 
obtain the Perceptual GCF (PGCF). It is substituted in the 
Extended Yule-Walker normal equations instead of the 
GCF. PGCF can be easily obtained by applying the inverse 
Fourier transform to the last obtained PGPSD. i.e., 

(14) )}({)( 1 �klkl TFtCPGCF �
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Where )(tCkl

denotes the PGCF and )( fTkl denotes the 
PGPSD.
In the discrete case, the Inverse DFT (IDFT) replaces the 
inverse Fourier transform. The discrete form of Equation 
(14) is:
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2.5. Obtaining PTVLP coefficients
This step finalizes the PTVLP analysis of speech. The 
appropriate lags of the PGCFs were used to solve the 
Extended Yule Walker (Normal) equations (6) in order to 
get the optimal (in perceptual MMSE sense) coefficients of 
the PTVLP model. The extended LWR algorithm was found 
useful to solve the Yule – Walker (Normal) equations [5].
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These coefficients are further used as the observation vector 
of the correspondent speech frame for recognition purpose.

3. EXPERIMENTS RESULTS

The experiments were performed for isolated words 
recognition. The speech database that was used for these 
evaluations is a part of the Texas Instruments DIGIT 
(TIDIGIT). The database is consisted of the ten English 
language digits (0 – 9). Each digit has 448 repetitions, half 
male, half female, with sampling rate of 8 kHz. Each digit 
utterances were divided to 224 for Training and 224 for 
Testing. Hidden Markov Model (HMM) [6] was used to 
model each digit and the observations per each speech frame 
were the PTVLP coefficients of it. The well known HMM 
Tool Kit (HTK) [7] was used to train and test the HMMs per 
digit. Left to right HMMs were used as in general in speech 
modeling. 
Synthetic WGN was added to the clean speech utterances in 
order to examine the recognition performance in the 
presence of noise.
Baseline parameters for three different features extraction 
models: PTVLP, PLP and TVLPC are depicted in Table 1. 
Equal features rate was selected in order to fairly compare 
the three techniques.

PARAMETER PTVLP/TVLPC PLP
Model Order 5 5
Frame Length 50 msec 25 msec
Frames Overlap 60 % 60 %
Frame Rate 20 msec 10 msec
Features Length 10 5
Features Rate 500 Coeffs/Sec 500 Coeffs/Sec
Basis Functions Power Power
Number Of Basis 
Functions 2 2

Tested SNRs 0 - 30dB 0 - 30dB

Table 1: Baseline Parameters for PTVLP, TVLPC and PLP 
techniques

Figure 3 depicts the recognition rates versus SNR of the 
three features extraction models (PTVLP, PLP and TVLPC).
For the PTVLP and PLP, we have also implemented 
additional experiment, by applying a simple, Wiener based, 
noise reduction method. It can easily seen that the PTVLP
model, when using this simple noise reduction method, 
achieves better recognition rates than all other models from 
about 2dB SNR and above. 
This result assures our basic assumption that the addition of 
the perceptual principles to the time varying analysis of the 
speech will increase the model accuracy and therefore, will 
achieve better recognition results than the two models it is 
based on, the TVLPC and PLP.  

Figure 3: Recognition Rates of PTVLP, PLP and TVLPC in 
WGN Environment, with and without Noise Reduction 

4. CONCLUSIONS

A new perceptual time varying model for non–stationary 
analysis of speech signals has been described. This model
combines the advantages from the TVLPC model and the 
PLP model in order to increase the agreement of the speech 
model to the natural human hearing. The PTVLP has 
achieved better recognition rates than these of the TVLPC 
and PLP over wide SNR range. The reason for that is the 
incorporation of the perceptual and dynamic information in 
the model.
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