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ABSTRACT
A novel method is presented for a robust two channel multi-
ple Time Difference of Arrival (TDOA) estimation for multi-
speaker localization which can provide satisfactory perfor-
mance even in highly reverberant environment. The method
is based on a recursive frequency-domain Independent Com-
ponent Analysis (ICA) and on a novel State Coherence Trans-
form (SCT). Exploiting the phase coherence of the demixing
matrices obtained in the ICA stage the SCT is able to generate
envelopes with clear peaks in the corresponding maximum-
likelihood TDOAs. The SCT envelopes are computed inde-
pendently in each time-block and accurate multiple TDOAs
are estimated by means of a time-frequency sparse represen-
tation of the sources. The method has been applied to real
data obtained by recording many sources in a room with a re-
verberation time of 700ms. Experimental results show that an
accurate localization of 7 closely-spaced sources is possibile
given only few seconds of data even in the case of low SNR.
Experiments also show the advantage of using the proposed
solution rather than the well-known GCC-PHAT.

Index Terms— blind source separation (BSS), TDOA
estimation, independent component analysis (ICA), multiple
speaker localization

1. INTRODUCTION

Multiple speaker localization is a difficult problem which
gives rise to high interest in the field of acoustic signal pro-
cessing and audiovisual information fusion, in particular for
meeting scenarios. A wide literature is available with this
regard. A high reverberation time, the presence of strong
enviromental noise, and spatial ambiguity make the local-
ization task harder, especially when just two microphones
are used. In the last years multiple TDOA estimation was
also addressed by the BSS community since knowledge of
the TDOAs is essential for underdetermined sound source
separation.
Recent works show that the frequency-domain BSS is strictly
connected with the wave propagation from the sources [1].
Our earlier work [2] showed that a joint TDOA estimation
can be performed for all the sources by using the demixing
matrices, estimated for each frequency by an Independent
Component Analysis algorithm. Such estimation is accom-
plished by a proper State Coherence Transform (SCT) of the
state space associated with the demixing matrices. This is
invariant to the permutation problem and it is insensitive to
the spatial aliasing caused by phase-wrapping.
In this work we extend the SCT to a cumulative SCT (cSCT)

based on a sparse-dominance assumption of the sources,
which is able to estimate TDOAs related to many sources
by using only two microphones. The next section recalls the
physical interpretation of the ICA when applied in frequency-
domain since it is the starting point of the proposed method.

2. FREQUENCY-DOMAIN ICA AND ITS PHYSICAL
INTERPRETATION

A straightforward interpretation of the frequency-domain
ICA is given when applied to two channel mixtures of two
observed sources. The signals observed by the microphones
can be modeled using a time-frequency representation where
each component is evaluated by a short-time Fourier analysis.
For each frequency a time observation can be considered as a
linear combination of the time-frequency components associ-
ated to the original source signals. In matrix notation one can
write:

y(k, τ) = H(k)x(k, τ) (1)

where y(k, τ) are the observed mixtures, x(k, τ) are the orig-
inal signals, τ is the time instant at which each frequency is
evaluated according to the time-frame shifting, k is the fre-
quency bin index and H(k) is a mixing matrix. Thus, by
applying a complex-valued ICA to the time-series of each
frequency, the original components can be retrieved by com-
puting a demixing matrix W(k) which is an estimate of the
matrix H(k)−1 up to scaling and permutation ambiguities:

x(k, τ) = Λ(k)P(k)W(k)y(k, τ) (2)

where Λ(k) and P(k) are a complex-valued scaling matrix
and a permutation matrix, respectively.

In anechoic ideal environment the mixing matrix could be
modeled as:

H(k) =
( |h11(k)|e−jϕ11(k) |h12(k)|e−jϕ12(k)

|h21(k)|e−jϕ21(k) |h22(k)|e−jϕ22(k)

)
(3)

ϕiq(k) = 2πfkTiq (4)

where Tiq is the propagation time delay from the q-th source
to the i-th microphone and fk is the true frequency associ-
ated to the k-th frequency bin. Thus, if the reverberation is
neglected, the phase term ϕiq is expected to vary linearly ac-
cording to the frequency and such a linearity can also be found
in the estimated separation matrices W(k). In fact our earlier
work [3] has shown that the ratios between the elements of
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each row of W(k) are scaling invariant and can be considered
as observations of the ideal propagation model of the acoustic
wave related to each source:

r1(k) =
|h12|
|h22|e

−j2πfkΔt1 , r2(k) =
|h11|
|h21|e

−j2πfkΔt2 (5)

where Δt1 and Δt2 are the true TDOAs of the sources. Each
ratio depends on the frequency and on the TDOA and thus can
be considered as a state associated to each source. Assum-
ing the sources to be in far-field conditions, the propagation
model of a source yelding a TDOA of τ can be represented
as:

c(k, τ) = e−j2πfkτ (6)

In real conditions the acoustic propagation is distorted by the
reverberation effects and the ratios ri(k) are noisy observa-
tions of the ideal propagation models. Each TDOA can be ef-
fectively estimated by minimizing the euclidean distance be-
tween the ideal model and the normalized ratios:

Δti = argmin
τ

∑
k

||c(k, τ) − ri(k)|| (7)

where Δti is the TDOA estimated for the i-th source and the
states are normalized as follows:

ri(k) =
ri(k)

||ri(k)|| (8)

However for the permutation ambiguity we do not know
which states belong to a particular source and the TDOA es-
timation cannot be directly performed with the minimization
in (7). In [4] we showed that a multiple TDOA estimation
can be performed by a proper transform which jointly uses
the states associated to all the sources and thus it is invariant
to the permutations. Such a transform was referred to as State
Coherence Transform and was formulated as follows:

SCT (τ) =
X

k

NX
i=1

»
1 − g

„ ||c(k, τ) − ri(k)||
2

«–
(9)

where N is the number of observed states for each frequency
and g(·) is a function of the euclidean distance. In [4] it has
been shown that, in the case N = 2 by choosing g(x) = x a
mathematical constraint holds for which the SCT will always
be maximized for τ equal to the maximum-likelihood TDOA
of each source.

3. CUMULATIVE SCT FOR MULTIPLE TDOA
ESTIMATION

The SCT is theoretically able to estimate a number of TDOAs
at least equal to the number of microphones. For the case of
two channels, for the k-th frequency bin, ICA estimates two
ratios r1(k) and r2(k) which are expected to represent the
propagation of two sources. However when the number of
the sources is greater than the number of the microphones we
can assume a sparse dominance of the sources in the time-
frequency domain. This assumption holds, for example, in
the case of multiple speakers emitting sound with comparable
powers. Hence, for each frequency ICA estimates a demix-
ing matrix which represents an observation of the propagation

models associated to the two dominant sources at a given in-
stant. By computing ICA in different time-frequency blocks
we expect to observe states which represent the propagation
models of all the active sources. Then the coherence of such
states can be globally evaluated by using a cumulative SCT
(cSCT), which is formulated as follows:

cSCT (τ) =
X

b

X
k

NX
i=1

»
1 − g

„ ||c(k, τ) − rb
i (k)||

2

«–
(10)

where rb
i (k) is the normalized state obtained for the k − th

frequency bin in the time block b. The peak positions in the
cSCT envelope reveal the TDOAs of the active sources
It is worth noting that the SCT can also be derived if ICA
is applied to a number of microphones larger than two. In
this work we focused on the two channel estimation prob-
lem since we observed that two microphones are sufficient
to enable the TDOA estimation for a considerable number of
sources. However, it is clear that as the number of the sources
is increased, the sparsity of the signals in time-frequency do-

main decreases. Hence the observed ratios rb
i (k) would be

more accurate if a larger number of microphones were used
in the ICA stage.
The theoretical formulation of (10) requires the estimation of

the ratios rb
i (k) to be defined for different time-blocks. How-

ever since ICA needs to be applied to relatively long sig-
nals, a trade-off between time resolution and ICA accuracy
is needed. In [5] we showed that a recursive approach across
the frequency can be exploited to increase the ICA accuracy
when short signals are observed. In this work such a method

allowed us to estimate the ratios rb
i (k) even using time-blocks

of less than 300ms. The next section summarizes the main
steps of the recursive ICA approach which plays an important
role in the effectiveness of the cumulative SCT analysis.

4. RECURSIVE ICA
In [5] and [3] we proposed a new recursive approach to im-
prove ICA when used for a frequency-domain blind source
separation. In this work we are not interested in the source
separation but only in the TDOA estimation by means of the
separation matrices derived by the ICA step. The proposed
strategy consists in performing the ICA recursively, e.g. from
the highest to the lowest frequency. At each frequency a ma-
trix Wsmooth(k) is estimated as a smooth extension from the
noisy matrices W(k) observed at previous frequencies. The
resulting matrix is used to initialize the matrix W0(k) for the
ICA of the adjacent frequency. The matrix Wsmooth(k) is es-
timated by filtering its determinant value. A simple and com-
putationally inexpensive ε- Normalized Least Mean Square
(ε−NLMS) predictor is used. In order to reduce the steady-
state error, the LMS filter has been implemented with a vari-
able ε approach as proposed in [6]. The full description of
the proposed filtering procedure is presented as follows. For
a given frequency bin k, in order to remove the scaling ambi-
guity, the observed matrix W(k) is normalized as:

W(k) = C(k)W(k) (11)

where C(k) is computed as:

C(k) =
(

c1(k) 0
0 c2(k)

)
, ci(k) =

e−j·arg(wii(k))∑N
n=1 |win(k)|

(12)
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The smooth matrices are computed, with k starting from the
highest bin and proceeding backward, according to a proce-
dure based on the following relationships:

Wsmooth(k) =
L∑

l=1

W(k + l)hl(k) (13)

h(k) = h(k + 1) + μ
e(k)∗D(k)

D(k)HD(k) + ε
(14)

e(k) = |W(k)| − h(k + 1)HD(k) (15)

where h(k) is the vector [h1(k), h2(k), ..., hL(k)]T of the
complex-valued coefficients of the smoothing filter evaluated
at frequency k, L is the order of the filter, μ is the step-size,
ε is the normalization factor and D(k) is the vector of the
observed determinant values:

D(k) = [d1(k), d2(k), ..., dL(k)]T , dl = |W(k + l)|. (16)

The main steps of the proposed approach are summarized in
the following pseudo code:

Wsmooth = I
for k=highest frequency index to 1

W0(k)=Wsmooth
L = min(Lmax, highest frequency index−

k + 1)
compute W(k) by ICA, starting from W0(k)
normalize W(k) as in (11)-(12)
estimate Wsmooth as in (13)-(16)

end

where Lmax is the maximum order adopted for the smooth-
ing filter. By using such a recursive initialization, ICA is con-
strained to converge to the solution which guarantees a fre-
quency coherence of the observed separation matrices W(k).
In other terms, the recursion increases the probability that the
ratios ri(k) represent the propagation models of the acoustic
waves related to the direct path of the sources. Across the
frequencies, the phase coherence of the observed propagation
models is increased and consequently the SCT analysis can
be performed accurately.

5. EXPERIMENTAL RESULTS

An algorithm of multiple TDOA estimation has been imple-
mented both in Matlab and in C++ and works in real-time on
a normal laptop. As a first step a short-time Fourier analysis
was performed in order to obtain a frequency-time represen-
tation of the observed mixtures y(k, τ). For each frequency
bin the demixing matrices W(k) were obtained by applying a
Scaled Natural Gradient [7]. The states were obtained as in
(5) and (8). The cumulative SCT analysis integrates the eu-
clidean distance between the model and the observed states,
across all the time-frequency observations. To perform an on-
line TDOA estimation, rather than integrating all the observed
states, the SCT envelopes were recursively averaged in each
time-block. The resulting cumulative SCT envelope has been
estimated as follows:

cSCT b(τ) =
1
b
SCTb(τ) +

(b − 1)
b

cSCT b−1(τ) (17)

Fig. 1. Experimental setup for the case of 7 sources.
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(a) Cumulative SCT profile com-
puted with blocks of 300 ms.
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(b) Cumulative GCC-PHAT com-
puted with frames of 4096 samples.

Fig. 2. cSCT and cumulative GCC-PHAT, SNR=20dB (the
red dotted lines are the true expected TDOAs).

where b is the time-block for which the SCTb(τ) is evalu-
ated. The algorithm is able to detect the TDOAs of many
sources. In this experiment we evaluated the case of utter-
ances produced by loudspeakers located as shown in figure 1.
In this experiment the algorithm has been evaluated for the
estimation of the TDOAs of 7 loudspeakers playing simulta-
neously sound files of about 10 seconds: 3 male utterances,
3 female utterances, 1 pop song. All the sources were over-
lapping in time. The resulting average angular distance be-
tween the loudspeakers was about 13◦. Recordings were per-
formed in a room with T60 = 700 ms with a sampling rate
of fs = 16kHz and the FFT analysis was performed with
an Hanning window of 2048 samples and a frame-shifting of
512 samples. The length of the time-block used for the ICA
and the SCT analysis was 300 ms. Since the signals were
recorded with two microphones on a distance of 0.26 m of
each other, according to the sound speed (e.g. 340 m/s) the
maximum admissible time-delay was expected to be of about
±0.77 ms. Then, the SCT was computed for 180 uniformly
spaced values of τ in the range from −0.77 ms to +0.77 ms.

In our earlier work [2] we showed that under specific condi-

Fig. 3. Selected TDOAs from the estimated cumulative SCT
(the red dotted lines are the true expected TDOAs).
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(b) Cumulative GCC-PHAT com-
puted with frames of 4096 samples.

Fig. 4. cSCT and cumulative GCC-PHAT, SNR=5dB (the red
dotted lines are the true expected TDOAs).

tions the GCC-PHAT [8] is equivalent to the SCT. Hence, the
performance of the cumulative SCT was compared to a cumu-
lative GCC-PHAT derived recursively as in (17) where b rep-
resents the time-frame where the GCC-PHAT is evaluated. In
order to obtain a theoretical resolution of 180 possible time-
delays, an interpolation was applied and the GCC-PHAT has
been computed and accumulated over frames of 4096 points
with step of 256 points. Figure 2 shows the final envelopes
associated with the cumulative SCT and with the cumula-
tive GCC-PHAT when the signals are affected by an Additive
White Gaussian Noise (AWGN) resulting in a SNR of 20dB.
Both the envelopes shows clear peaks at values close to the
corresponding expected TDOAs (red dotted lines). Figure 4
shows the envelopes obtained in case of a SNR = 5dB. Note
that, even in presence of lower SNR, the cumulative SCT still
maintains clear peaks located at the corresponding theoreti-
cal TDOAs values. The advantage of the SCT stems from the
more accurate estimation of the propagation model since the
ICA stage is less sensitive to the noise than the GCC-PHAT.
In figure 3 the estimated TDOAs selected by means of the
peaks of the cumulative SCT are plotted. One can note that
after a few seconds the estimated TDOAs approach the cor-
rect values.

Figure 5 compares the Root Mean Square localization Er-
ror (RMSE) averaged over all the sources. The corresponding
directions of arrival were computed according to the geomet-
rical information and using the TDOAs estimated at each time
block. One can observe that for a SNR = 20dB both the
cumulative GCC-PHAT and the cumulative SCT converge in
few seconds to a small error. Note that the SCT converges
to an error very close to the theoretical value (0.5◦) expected
in the case of a resolution of 1◦. Finally, for the case of a
SNR = 5dB we observe that the cSCT clearly outperforms
the cumulative GCC-PHAT which does not converge to an
acceptable error even after 10s of data.

6. CONCLUSIONS

This work introduced a new method to accomplish multi-
ple TDOA estimation by using only two microphones. The
cumulative State Coherence Transform and the recursive
ICA analysis represent the most relevant components that
contributed to derive a robust and effective solution to the
problem of multiple speaker localization. Experimental re-
sults show that with this approach it is possible to accurately
estimate the TDOA of 7 sources, located in a highly reverber-
ant environment, by just analyzing few seconds of data, even
in presence of strong noise. The advantages with respect to
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(a) case of SNR=20dB.
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(b) case of SNR=5dB.

Fig. 5. Average Root Mean Square localization error for
the DOAs computed with the cumulative GCC-PHAT (dotted
line) and with the cSCT method (solid line).

the use of a cumulative GCC-PHAT were also highlighted.
Next activities will concern an investigation on the impact
of the proposed solution using tasks commonly adopted for
speaker localization benchmarking.
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