
DETECTING BANDLIMITED AUDIO IN BROADCAST TELEVISION SHOWS

Mark C. Fuhs, Qin Jin, and Tanja Schultz

InterACT, Language Technologies Institute
Carnegie Mellon University

Pittsburgh, PA 15213
{fuhs,qjin,tanja}@cs.cmu.edu

ABSTRACT

For TV and radio shows containing narrowband speech,
Speech-to-text (STT) accuracy on the narrowband audio can
be improved by using an acoustic model trained on acousti-
cally matched data. To selectively apply it, one must rst be
able to accurately detect which audio segments are narrow-
band. The present paper explores two different bandwidth
classi cation approaches: a traditional Gaussian mixture
model (GMM) approach and a spline-based classi er that
categorizes audio segments based on their power spectra. We
focus on shows found in the DARPA GALE Mandarin train-
ing and test sets, where the ratio of wideband to narrowband
shows is very large. In this setting, the spline-based classi er
reduces the number of misclassi ed wideband segments by
up to 95% relative to the GMM-based classi er for the same
number of misclassi ed narrowband segments.

Index Terms— Speech processing, speech recognition,
pattern classi cation, telephony

1. INTRODUCTION

One of the challenges presented when performing STT on
television and radio shows is that narrowband audio can be
embedded within the show. This typically occurs for particu-
lar speakers who participate via telephone, which is typically
8kHz, 8 bit μ-law encoded and band-pass ltered to between
300Hz and 3.6kHz. Using acoustic models matched to the test
condition is well known to improve STT accuracy; however,
to use a narrow-band acoustic model, one must rst deter-
mine to which audio segments the narrow-band model should
be applied.

Detection can be particularly challenging in broadcast
shows because distortion in the upper bands is frequently
present to varying degrees and is correlated with the narrow-
band speech; Figure 1 shows three examples. Background
music and other wide-band audio can also be found mixed
in during the narrow-band speech. For the types of shows
addressed by DARPA’s GALE program, narrowband seg-
ments are a small minority, making it critical to minimize
the false-positive rate of detecting a narrowband segment,

since using a narrowband acoustic model to decode wideband
audio typically degrades STT performance as much as using
it to decode narrowband audio will improve performance.

Gaussian mixture models (GMMs) are a popular statisti-
cal framework for detecting narrowband audio [1, 2, 3]. We
compare the GMM approach with an approach based on clas-
sifying the audio power spectrum. Section two describes the
training and testing conditions, as well as a description of the
wide-band and narrow-band acoustic models. Sections three
and four describe the GMM and spectrum-based classi ers,
respectively. Conclusions are drawn in section ve.

2. TRAINING AND TESTING CONDITIONS

The present experiments focus on Mandarin TV shows pro-
vided within DARPA’s GALE program. Unfortunately, ref-
erences do not include the bandwidth of the audio segments.
For training, speakers were selected from the GALE train-
ing data releases (excluding P3R1), and one segment of each
speaker was hand-labeled. All segments from that speaker
were then included as training data with the bandwidth label
assigned from the single hand-labeled segment (15 hrs total).
Speaker selection was random, but biased by a primitive clas-
si er to exclude speakers that were “obviously” wide-band
speakers in order to achieve a better training set balance be-
tween bandwidth classes.

The test set comprised the entire P3R1 GALE data re-
lease, excluding narrow-band shows from the Phoenix net-
work (see below), which is 303 hrs of audio. A large test set
was chosen since narrowband audio is relatively uncommon
in shows in this corpus (0.4% of segments). (By contrast, call-
in radio shows, for example, would have a much higher ratio.)
The test set was labeled semi-manually, using the spectrum-
based classi er (see Section 4) run on multiple segments per
speaker concatenated together – at least 15 sec of audio. All
segments classi ed as narrowband and segments classi ed as
wideband that were close to the decision surface were then
hand-labeled. As Table 1 shows, the likelihood of a narrow-
band segment decreased rapidly with distance from the deci-
sion surface, suggesting that, without manually labeling ev-
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Fig. 1. Three examples of telephone audio segments found
within TV show audio otherwise sampled at 16kHz. Signi -
cant distortion is present above 4kHz.

ery segment, the vast majority of narrowband segments have
been identi ed. Moreover, narrowband segments in the 1.25
to 1.5 distance category were subjectively often quite dif cult
to identify manually due to high levels of distortion.

To demonstrate that STT performance bene ts from iden-
tifying the narrowband segments, narrowband segments were
decoded using “wideband” and “narrowband” SI acoustic
models. Brie y, both models were trained on the Y1Q2,
Y1Q4, Y1 interim and P2R2 GALE releases from the LDC,
approximately 840 hrs in total. These training corpora in-
cluded shows from several networks, though most were from
CCTV, with audio bandwidth extending to the 7-8kHz range,
and Phoenix, with audio power extending only to 4.7kHz.
The “wideband” model was trained on this mixed set of
shows as they appear in the training corpus. The “narrow-
band” acoustic models were originally build to improve per-
formance on the Phoenix shows: all non-Phoenix shows
were low-pass ltered to 4.7kHz. Nonetheless, STT per-
formance on telephone data is signi cantly better using this
latter model. Both acoustic models use initial- nal phonetic
models, 7000 clustered states, and up to 32 Gaussians per
state. A full system description of our Mandarin STT system

Distance to decision surface Segments % narrowband

0 to 0.5 102 18.6%
0.5 to 1.0 420 4.5%

1.0 to 1.25 358 2.0%
1.25 to 1.5 552 0.9%

Table 1. Semi-manual labeling of the test set. As the distance
from the SVM decision surface grows, the likelihood of an
incorrectly classi ed segment decreases precipitously.
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Fig. 2. Schematic overview of the GMM-based bandwidth
classi cation system.

can be found in [4]. On the GALE dev07 test set, WERs were
18.5% for the wideband model and 20.9% for the narrowband
model.

3. GMM-BASED BANDWIDTH ESTIMATION

Gaussian mixture models were used as generative models for
a two-class (narrowband / wideband) classi cation problem.
Our GMM-based bandwidth classi cation system, shown in
Figure 2, consists of ve key components: speech detection
(or silence removal), feature processing, pattern matching, de-
cision logic, and enrollment. Speech detection based on the
energy of the speech signal is applied to remove silence be-
fore further processing. For the feature processing we apply
13-dimensional Mel-frequency Cepstral Coef cient (MFCC).
Cepstral Mean Normalization (CMN) is applied over MFCC
features to remove channel effects. Using these features the
pattern matching component evaluates them under stored gen-
erative models and calculates a probability for each model.
The resulting scores are fed into the decision maker, where the
system nally decides on the bandwidth category of the input
speech. The decision threshold was de ned by whether the
log likelihood ratio (LLR) of the segment under each model
was above or below a xed constant.

Generative models must rst be trained for each band-
width, a process commonly referred to as enrollment. The
bandwidth models are trained by Maximum A Posteriori
(MAP) adapting on a Universal Background Model (UBM).
In our system, the UBM representing a general bandwidth
space is trained with 1024 Gaussian mixtures using both
narrowband and wideband data.

Figure 3 shows a DET curve of error rates for the GMM-
based classi er. Based on the percentage of misclassi ed
segments, the GMM-based classi er is capable of detecting
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Fig. 3. Plot of raw number of errors (bottom/left axes) and
corresponding error rates (top/right axes) for the two classi-

ers. Dashed line: GMM-based classi er using different LLR
decision thresholds. Solid line: Spline-based classi er using
different weightings of the training set classes.

87.5% of the narrowband segments with only a 4.4% false-
positive rate. However, the high ratio of wideband to narrow-
band segments in the test set also means that there will be 93
times as many misclassi ed wideband segments as narrow-
band segments. Other decision thresholds improve the error
ratio, but there is no point at which the bene t from apply-
ing the narrowband acoustic model to the correctly classi ed
narrowband segments would compensate for the harm of ap-
plying it to the incorrectly classi ed wideband segments.

4. SPLINE-BASED BANDWIDTH ESTIMATION

4.1. Power spectrum splines

Though signi cant distortion above 4kHz can be found in
telephone speech contained within TV and radio shows, there
is typically some difference in power between the speech sig-
nal below 4kHz and the distortion above. Moreover, there
tends to be a recognizable drop in the power spectrum in the
3.5-4kHz range. This second approach attempts to identify
narrowband segments based on the presence of such a drop.

To identify this drop, a spectrogram of each utterance,
based on 50ms frames, was summed over the frames to pro-
duce an average power spectrum, p (f). This power spectrum
was t with two splines:

plin (f) = af + b

pnonlin (f) = a1f + b + c tanh (d (f + m))
+a2

(
f − f5%

)
I
(
f > f5%

)

The plin spline is a simple linear function. The pnonlin spline
is composed of a linear function, a1f + b, plus a non-linear
sigmoidal function, c tanh (d (f + m)), intended to represent
an abrupt drop in power around a particular frequency. After
the drop is nearly complete – the sigmoid is 5% from its low-
est value – the linear portion of the spline continues. Its slope
may be adjusted to be different from the slope prior to the sig-
moid by the term a2

(
f − f95%

)
I
(
f > f95%

)
, where I is

the indicator function. These splines were motivated by the
observation of a large number of wide- and narrowband audio
segments and can be thought of as generative models of the
power spectrum of each segment class.

The plin spline was regressed to the observed power
spectrum by the standard least-squares approach. The non-
linearity in the pnonlin spline required that it be t with
gradient-descent. A two-pass approach was used, rst tting
the spline to the observed power spectrum from 1.5kHz to
6.75kHz. The rst pass gave an estimate of the beginning of
the drop, f95%, and the end of the drop, f5%. During the sec-
ond pass, only the observed spectrum from f95% - 1.25kHz
to f5%+2.25kHz was used in order to minimize the effects of
power variations near the higher and lower frequencies of the
spectrum. Examples are shown in Figure 4.

4.2. SVM classi er

Once the two splines were t to the power spectrum of an
audio segment, the following features were extracted:

• The coef cient of determination of the nonlinear spline
relative to the linear spline. This is the proportion of the
plinresidual that is removed by using the pnonlin model
instead.

• The “differential magnitude” of the drop: over the fre-
quency span occupied by the non-linearity in pnonlin,
how much more of a power drop is measured according
to pnonlin than plin.

• The power at the frequency where 95% of the drop is
completed.

• Coef cients c and d in pnonlin.

• The average power over the entire show.

These features were scaled and used as input to an SVM with
a cubic polynomial kernel. Kernel parameters and the slack
variable weight were tuned using 20-way cross-validation on
the training set.

Figure 3 shows a DET curve of error rates for the spline-
based classi er. Compared to the GMM-based classi er,
the spline-based classi er shows substantially lower wide-
band misclassi cations for the same number of narrowband
misclassi cations. Narrowband misclassi cations were gen-
erally because the power spectrum showed only a small drop
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Fig. 4. Power spectra and splines for the three examples
shown in Figure 1. The solid line indicates the observed
power spectrum. The dashed line is the plin spline and the
dotted line is the pnonlin. While the spline-based approach is
very good at detecting discrete power drops, even with signi -
cant upper-band distortion (top, middle), more gradual power
drops (bottom) result in power spectra that are more dif cult
to differentiate from a wideband signal. Though shifted, the
y-axis scales are the same for visual comparison.

in power relative to a more linear decline, as in Figure 4
(bottom). However, the ability of the spline-based classi er
to trade off wideband and narrowband misclassi cations is
more limited, and may not be applicable in corpora where
narrowband segments with high distortion are very common.
One potential bene t of the spline-based approach is that the
features derived from the splines are largely independent of
the cutoff frequency. Thus, the same classi er can recognize
band-limited audio with different cutoff frequencies without
retraining.

To test the usefulness of the spline-based classi cation on
STT performance, we decoded the set of segments classi ed
as narrowband either manually or by the spline-based classi-

er using the acoustic models described in Section 2. Table 2
presents the results using an SVM class weight optimized on
the GALE dev07 test set. The WER of this set of segments
is signi cantly improved by identifying and decoding them
using a narrowband acoustic model. The spline-based classi-

cation, which identi es 65% of the segments, shows 71% of
the bene t that manual classi cation could achieve.

Condition # wide # narrow WER

Wideband model only 656 0 41.9
Spline-based classi er 254 402 40.4
Manual classi cation 33 623 39.8

Table 2. Bene ts of using the spline-based classi er on STT
WER. Listed are the number of segments decoded using each
acoustic model and the combined WER of all 656 segments.

Interestingly, the 33 segments that were identi ed manu-
ally as wideband but by the classi er as narrowband had very
poor WERs (typically over 50%) using either acoustic model.
Decoding the 656 segments using the narrowband acoustic
model also yielded 39.8%.

5. CONCLUSIONS

We present results from two very different approaches to de-
tecting audio bandwidth. In a setting where the ratio of wide-
band to narrowband segments is very large, the GMM-based
classi er misclassi ed too many wideband segments for the
classi er to be bene cial. The spline-based classi er was
speci cally tailored to detect the abrupt drop in power typical
of narrowband segments embedded in wideband audio. For
a given number of narrowband misclassi cations, the spline-
based classi er could achieve as much as a 95% reduction
in wideband misclassi cations relative to the GMM-based
classi er, enabling the selective application of a narrowband
acoustic model to improve STT accuracy.
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