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ABSTRACT

This paper investigates the automatic recognition of emotion from
spoken words by vector space modeling vs. string kernels which
have not been investigated in this respect, yet. Apart from the spo-
ken content directly, we integrate Part-of-Speech and higher seman-
tic tagging in our analyses. As opposed to most works in the field,
we evaluate the performance with an ASR engine in the loop. Ex-
tensive experiments are run on the FAU Aibo Emotion Corpus of
4k spontaneous emotional child-robot interactions and show surpris-
ingly low performance degradation with real ASR over transcription-
based emotion recognition. In the result, bag of words dominate over
all other modeling forms based on the spoken content.

Index Terms— Speech analysis, Speech recognition, Feature
extraction

1. INTRODUCTION

The recognition of emotion from speech is mostly realized by means
of acoustic feature analysis. However, also the spoken content is
well known to carry information on the speaker’s emotion [1]. This
is usually reflected in the usage of certain words or grammatical
alterations - which means in turn, in the usage of specific seman-
tic and pragmatic entities. A number of approaches exist for this
analysis: e.g. key-word and phrase spotting [2], rule-based model-
ing [3], Semantic Trees [4], Latent Semantic Analysis [5], World-
knowledge-Modeling [6], among many other more handcrafted so-
lutions. However, two methods prevail, presumably because they
are shallow representations of linguistic knowledge and have already
been frequently employed in automatic speech processing: (class-
based) N-Grams, e.g. [7] and vector space modeling [8, 1]; these
methods will be dealt with in the following sections. Moreover, we
introduce string kernels as novel solution in the field.

Considering emotion analysis from spoken text, only few results
for emotion recognition rely on ASR output [8] rather than on man-
ual transcription of data. Likewise we had shown the gain obtained
by supplementing acoustic features with linguistic ones in [1] based
on transcription. However, more knowledge is needed on how actual
ASR downgrades performance with respect to individual linguistic
feature types.

To actually recognize emotion from text, first a vocabulary has
to be established. This vocabulary usually needs to be be reduced
somehow, by discarding stop-words. Data-driven approaches as
Salience or Information Gain-based reduction are popular. The
easiest, yet often effective way, is also stopping by the general min-
imum frequency of occurrence within a training corpus, as done

herein. Further stemming - i.e. clustering of morphological variants
as flexions (e.g. by declination or conjugation) reduces the number
of entries in the vocabulary while at the same time providing more
training instances per class. Thereby also words that were not seen
in the training can be mapped upon lexemes, as by simple N-Gram
Stemming, or by (Iterated) Lovins, as herein, that bases on suffix
lists and rules for their application. A very compact approach to
stemming is the use of so called Part-of-Speech (POS) classes, such
as nouns, verbs, adjectives, particles [1]. Also sememes, i.e. se-
mantic units represented by lexemes, can be clustered into higher
semantic concepts such as generally positive or negative terms
[1]. In addition, non-linguistic vocalizations like sighs and yawns,
laughs, cries, and coughs can easily be integrated into the vocab-
ulary [1]. Next, adequate numerical modeling is required to carry
out the actual recognition process. This will be explained in the
following two sections for the methods considered, namely vector
space modeling in sec. 2 and string kernels in sec. 3. Subsequently
we present the data used for experiments in sec. 4 and the Automatic
Speech Recognition (ASR) process in sec. 5 prior to results in sec. 6
and the conclusion in sec. 7.

2. VECTOR SPACE MODELING

Bag-of-Words (BOW), a form of vector space modeling, is a well-
known numerical representation form of text in automatic document
categorization. It has been successfully ported to recognize senti-
ments or emotion in [8]. Each word in the vocabulary adds a dimen-
sion to a linguistic vector representing the term frequency within the
actual utterance. Note that usually large feature spaces occur, which
requires some kind of feature space reduction. This can be obtained
by removing stop words and stemming (for details on works on this
set cf. [9]). To smooth Pareto or Zipf distributed feature vectors,
frequencies are log-transformed. Furthermore, the term frequency is
normalized by utterance length and w.r.t. the overall term frequency
within the training corpus. Generally most vector elements resem-
ble zero, as feature vectors are constructed for short utterances rather
than for longer texts, as in document retrieval, and only few words of
the vocabulary are seen. Support Vector Machines (SVM) show high
performance for this task. The possibility of early fusion with acous-
tic features helped make this technique very popular in speech-based
emotion recognition [1].

Alternatively, N-grams are applied for emotion recognition to
model sequences of words. Following Zipf’s principle of least effort
stating that irrelevant function words occur very frequently opposing
terms of interest that occur sparsely, the number of considered words
is reduced to small N in order to prevent over-modeling. Due to
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the typical data sparseness in emotion recognition, mostly uni-grams
(N = 1) have been applied so far [10], besides bi-grams (N = 2)
and tri-grams (N = 3) [11].

However, only N-Grams with N > 1 overcome the missing
modeling of word order lost by BOW. As they do not allow for
easy integration in the acoustic vector, we suggest to combine these
methods by Bag-of-N-Grams (BONG). Thereby the frequency of N-
Grams (with N > 1) is counted rather than that of words (N = 1).
Note that by “backing off” we can combine BOW and BONG with
diverse N .

3. STRING KERNELS

Alternatively, the string kernel approach makes use of a mapping
from text information to a high dimensional feature space without
explicit calculation of features. String kernels have proved to be a
promising approach in similar tasks like text classification, cross-
language document matching, authorship attribution, and text clus-
tering. Based on the theory of SVM, the idea of kernel mapping
is extended for strings as input parameters. Thus, a special kernel
for text information is used, called the string subsequence kernel
(SSK). The idea behind string kernels is to observe small substrings
in a given string. For a predefined substring length, all possible sub-
strings form a feature space in which a string (the spoken utterance)
can be represented. The numeric value of each feature depends on
the substring frequency in the string and on the degree of contiguity.
For example the substring “int” exists in the word “international”
as well as in “experiment”, but with different degree of contiguity.
This degree of contiguity is weighted by a decay factor λ ∈ [0, 1]
which penalizes non-contiguous substrings. Taking non-continuous
substrings into account is a specific characteristic of the string kernel
method, not supplied by other approaches.

The transformation of a string s into the feature space is done by
a mapping Φ(s) which can be calculated numerically as described
in [12]. In analogy to SVM theory, this mapping does not have to
be done explicitly. An implicit calculation is done by using a kernel
function:

KΦ(s, t) = 〈Φ(s), Φ(t)〉 . (1)

This kernel function is part of the decision function for SVM. The
inner product calculated by the kernel can be seen as a numeric mea-
sure of similarity between two strings s and t. The calculation of this
string subsequence kernel can further be simplified due to recursive
computation [12], making the procedure practicable.

In order to speed up the computation, which can be quite time
consuming for huge databases, we use the lambda pruning tech-
nique. This approach is a trade-off between runtime and approxi-
mation accuracy and is done by introducing another parameter for
the string kernel, called maximum subsequence length Θ. The pa-
rameter determines the maximum length to which non-continuous
substrings are observed. For a substring length of lsubstring , the Θ
is set to Θ = 3 · lsubstring which yields to a good trade-off between
speed and accuracy. The decay factor λ is always set to 0.5.

4. FAU AIBO EMOTION CORPUS

The database used is the German FAU Aibo Emotion Corpus, a cor-
pus with spontaneous and emotional speech recordings of children
communicating with a pet robot; it is described in more detail in
[1]. The data was collected from 51 children (age 10 - 13 years, 21
male, 30 female) from two different schools (‘MONT’ and ‘OHM’);
the recordings took place in the respective class-rooms. Speech was

#turns MONT OHM {MONT, OHM}
M 123 372 495 (12.4 %)
N 670 610 1280 (32.1 %)
E 576 771 1347 (33.8 %)
A 369 499 868 (21.7 %)

{M, N, E, A} 1738 2252 3990 (100.0 %)

Table 1. Distribution of turns among emotions and schools.

transmitted with a wireless head set (Shure UT 14/20 TP UHF series
with microphone WH20 TQG) and recorded with a DAT-recorder
(sampling rate 48 kHz, quantization 16 bit, down-sampled to 16
kHz). While each recording session took around 30 minutes, the to-
tal amount of speech equals 9.2 hours of speech after removing the
pauses. This derives from a huge amount of silence due to reaction
time of the AIBO.

Five labelers (advanced students of linguistics) listened to the
recordings and annotated independently from each other each word
with respect to emotion. We resort to majority voting (henceforth
MV): if three or more labelers agree, the label is attributed to the
word. 4707 words had no MV; all in all, there were 48401 words.
However, the distribution of classes is very unequal. Therefore, we
down-sampled to a more balanced 4-class problem, which we refer
to as MNEA: it consists of 1224 words for Motherese (M), 1645
for Neutral (N), 1645 words for Emphatic (E), and 1557 words for
Angry (A) . E is a pre-stage of A and by definition hyper-articulated;
A is rather a “pedagogical” A—the children are often not really an-
gry and fully aroused. Thus it seems likely that A is sort of hyper-
articulated as well. Weighted kappa for multi-raters is 0.59 for these
four classes. These word-based labels were mapped onto turn-based
labels yielding the numbers of instances per emotion and school de-
picted in Table 1. A turn is thereby simply obtained by automatic
cutting at pause lengths greater or equal 1 s. For the mapping onto
turn-based labels, more details are described in [1]. This subset will
be referred to as the “turn set” of the full FAU Aibo Emotion Corpus,
in the following denoted as Aibo turn set.

Table 2 depicts the distribution of words mapped onto turns. As
can be seen from the number of Neutral words per turn, a typical
turn labeled as emotional consists of a considerable percentage of
Neutral words. It seems obvious that this is in particular true for
Emphatic speech, as usually only few words in a turn will be emp-
hazised. This table also depicts the number of words per turn and
emotion. Neutral turns are the longest in terms of the number of
words, followed by Motherese and Emphatic. Angry turns tend to
be rather short. Finally, table 2 displays the size of the vocabulary
across emotions and schools. Apparently, the size of the vocabu-
lary is dependent on the emotion: in the case of Neutral speech it is
highest, followed by emotional speech with lower inter-variability.
Further a higher vocabulary size is observed for the OHM school,
which is a higher education level school.

5. SPEECH RECOGNITION

For our experiments, we use an ASR engine based on continuous
hidden Markov models (HMM)[13]: a 30 ms Hamming window is
applied with 50% overlap to extract the MFCC coefficients 0-12 and
their first and second order regression coefficients. We use a tied-
state acoustic model (AM) with 41 phonemes, and 1979 back-off
tri-phones. Three states and five Gaussian mixtures per state proved
to be the optimal parameterization of the phoneme models. Note
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M N E A MNEA
#words (w) 2367 6893 5511 2840 17611
#turns (t) 495 1280 1347 868 3990
#w/t 4.8 5.4 4.1 3.3 4.4
N w/t [%] 44.2 94.4 56.7 29.7 65.4

#v(MONT) 99 250 139 107 316
#v(OHM) 190 430 238 173 596
#v(MONT,OHM) 220 514 276 206 698

Table 2. Distribution of emotions and size of the vocabulary (v)
across emotions and schools for the Aibo turn set

that we train exclusively on the FAU Aibo Emotion Corpus (and the
Aibo turn set, respectively). We use Baum-Welch re-estimation for
training and Viterbi decoding. As language model (LM) for ASR,
we use back-off bi-grams. Both AM and LM are trained and tested
speaker independently on data of one school, exclusively. Note that
better results are obtained for testing on MONT, as more instances
are available for training, and the vocabulary size is lower. In or-
der to recognize emotion from spoken content, we first deal with
the baseline performance for the generally demanding task of rec-
ognizing spontaneous and affective speech: to obtain an upper per-
formance benchmark using only the dataset at hand, we train on all
available turns from the one school and test on all turns from the
other school, and vice-versa. That way, we ensure maximum learn-
ing material while preserving utmost realistic conditions: speakers
and acoustic conditions are fully independent. Note that these are
considerably more turns than used in the ongoing emotion recog-
nition, as we can employ also turns that could not be assigned an
emotional label by a minimum labeler agreement of 3 out of 5. As
a general mean of performance evaluation, we use word accuracies
(WA), as in [13]. Table 3 shows the according WA and mean (μ) WA
for this task. The difference in performance between the two schools
is clearly seen. The mean WA of 67.7% demonstrates the difficulty
of this task: affective children’s speech having word fragments and
non-verbal vocalizations such as laughter. However, it can be raised
up to a mean WA of 76.9% by speaker adaptation (unpublished ex-
periments). Yet, here we are interested in absolute speaker indepen-
dence. Note that also a difference in WA per emotion exists: in [13]
the following ranking was observed: best recognized is Emphatic
and Angry speech, followed by Neutral, and least Motherese speech.
This seems to derive from the fact that Emphatic and Angry speech
are clearly (hyper-) articulated, cf. above.

6. EXPERIMENTAL RESULTS

We now describe a number of experiments for the actual recogni-
tion of emotion from spoken text, comparing emotion recognition
using ASR output with an upper benchmark, i.e. emotion recog-
nition using the spoken word chain. Note that only the first best
ASR result is used directly for linguistic analysis in search of af-
fective cues. More elaborate approaches could use acoustic confi-
dences or lattice structures for potentially higher robustness. Further
note that in this work, we focus on realistic conditions and refrain
from prototyping the dataset as done in almost any other work. We
can obtain considerably higher accuracies by picking more prototyp-
ical examples as shown in [14], however this does simply not reflect
the real-life use-case situation [15]. Table 4 shows results for SVM
as classifier with polynomial (upper half) and string kernels (lower
half), respectively. In the case of polynomial kernels, we first trans-
late the string into a numeric representation by vector space mod-

Train Test WA [%]
MONT OHM 63.5
OHM MONT 71.0

All 67.7

Table 3. Baseline word accuracy (WA) for speaker independent
cross-validation training on all of MONT (6653) and testing on all
of OHM (6989) turns and vice versa, full FAU Aibo database

eling. In the case of string kernels, the string is used directly. As
in section 5 we train and test cross-wisely school vs. school to en-
sure maximum independence. Reported are means. We consider
four cases, each: 1) direct usage of the recognized/transcribed string
(Iterated Lovins Stemming and minimum term frequency stopping
are applied), 2) Part-of-Speech tagging into six classes based on a
lexicon look-up table (in [9], we show that automatic tagging does
not deteriorate performance) , 3) as 1) but with 3-Gram tokeniza-
tion, and 4) higher 3 class semantic tagging by look-up as described
above. Furthermore we consider diverse combinations of these by
gathering the feature types into super-vectors. As a measurement we
use the recognition rate (RR) and the harmonic mean between RR
and the unweighted mean of class-wise recall rates F as introduced
in [1, 15] to better represent the in-balance of the data-set. In the
rightmost double column we show the difference Δ between ground
truth and ASR output. Note that in one case this difference is nega-
tive for RR yet positive for F due to shifted preferences of majority
or minority classes.

As a result we can observe that string kernels fall behind in
the majority of cases. Surprisingly, however, the difference be-
tween transcription and ASR based is comparably low in most
cases, though ASR has a considerable word error rate over 30% (cf.
above). The impact of ASR differs significantly between the two
different Kernel functions with respect to the different feature types
investigated, thus not allowing for easy interpretation which feature
type is more robust against ASR confusions. However, a ranking
between feature types can be carried out being partly in line with
our findings in [16]: first comes using the full string (BOW), then
tri-grams (BONG), then first POS prior to higher semantics.

7. CONCLUSION

Altogether, the results show that the string kernel analysis seems not
to be an interesting alternative to vector space modeling, especially
considering the high computational costs, even if lambda pruning is
applied. The only remarkable exception is, maybe, that tri-grams in
combination with string kernels perform better than in combination
with polynomial kernels. Also, the “incompatibility” with acoustic
features for early fusion speaks against this type of analysis. More-
over it is impossible to separate unimportant from meaningful fea-
tures by applying a feature selection.

Using genuine ASR however led to surprisingly low perfor-
mance loss, though ASR of emotional speech is a challenge and
provides high error rates.

Whether bags-of-(back-off)-N-Grams are advantageous will
need more investigation. However, the full spoken word chain
clearly outperforms any other representation form, even if it comes
to real ASR. The other representation forms (higher semantics and
part-of-speech tagging) however helped to slightly improve overall
results in combination with the spoken word chain.
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Type Transcript ASR Δ
B 3 P H RR F RR F RR F

Polynomial Kernel√
- - - 48.9 47.2 46.1 44.3 2.8 2.9

-
√

- - 44.5 41.2 43.3 39.7 1.2 1.4
- -

√
- 41.1 39.3 34.0 31.7 7.1 7.6

- - -
√

35.8 34.9 27.5 26.8 8.3 8.0√
-

√
- 49.9 48.2 47.1 45.0 2.8 3.2√

- -
√

49.3 47.6 47.1 44.6 2.2 3.1√
-

√ √
49.4 47.9 47.3 45.3 2.1 2.6

-
√ √ √

50.3 48.6 43.8 41.8 6.5 6.9√ √ √ √
49.9 48.2 47.6 45.6 2.3 2.6

String Kernel√
- - - 47.7 46.2 43.8 41.2 3.9 5.0

-
√

- - 47.1 45.1 46.6 43.8 0.5 1.3
- -

√
- 41.9 39.9 42.9 39.4 -1.0 0.4

- - -
√

32.5 31.8 30.0 27.8 2.5 4.0√
-

√
- 45.8 43.3 45.2 41.6 0.6 1.7√

- -
√

49.7 47.1 45.5 43.3 4.2 3.8√
-

√ √
47.7 44.0 47.6 42.8 0.1 1.2

Table 4. Selected results: Vector Space Modeling with Polynomial
Kernel (upper half) and direct string processing with String Kernel
(lower half) - ground truth by transcript vs. ASR, Bag-of-Words (B),
Part-of-Speech (P), Bag-of-Tri-Grams (3), Higher Semantics (H),
and some interesting combinations thereof [%].

In future work we will investigate usage of knowledge sources
to cope with “out-of-vocabulary” (OOV) occurrences with respect to
the emotion analysis. Likewise a word that is recognized by the ASR
unit, but was not seen throughout linguistic analysis can be replaced
by a (web-based) description. This may help recover the missing
word if the description does not inherit too many novel OOVs. Fur-
ther we aim at usage of the recognized word chain for acoustic mod-
eling with respect to emotion recognition: emotion models trained
text-independently of the spoken content can then be replaced by fit-
ting models. Finally, we plan to use confidence scores to improve
the results.
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