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ABSTRACT

In order to take advantage of the correlation information 
among different acoustic units in speech recognition, a 
novel approach named Minimum Covariance based Spatial 
Correlation Transformation was proposed in [8], which 
achieves satisfactory performance. However, there are two 
issues of this approach which can still be improved, 1) the 
estimation of the transformation matrix; 2) the construction 
of the history data. In this paper, a new algorithm of 
estimating the transformation matrix and a new strategy of 
constructing history supervector are proposed. Experimental 
results show that the improved approach achieves better 
performance than the original one. 

Index Terms—Speech recognition, spatial correlation, 
feature transformation, history data

1. INTRODUCTION 

The Hidden Markov Model (HMM) has been successfully 
applied in the area of speech recognition. However, one of 
its key assumptions named “frame-independence” ignores 
the correlation existing in real speech [1]. Since both the 
vocal organ of human being and the pronunciation rules of 
languages are almost fixed, for a specific speaker, strong 
correlation exists among different acoustic units such as 
phones and, what’s more, the correlation might be stable. 
The correlation among acoustic units can be described by 
the correlation among acoustic model parameters in the 
feature space, so we call it Spatial Correlation. 

In literature, the correlation among different models has 
been used in some model adaptation approaches. In 
Maximum Likelihood Linear Regression (MLLR) [2], 
different Gaussian components are tied with each others by 
a regression tree, to share the same transformation matrix. 
The MLLR approach yields good performance on 
significant amounts of adaptation data. 

Reference Speaker Weighting (RSW) [3] focuses on 
the correlation among different speakers. In this approach, 

each speaker is represented by a supervector, which is 
constructed from the speaker-dependent (SD) model 
parameters for the speaker. And a new speaker is considered 
to be a weighted combination of a set of training speakers 
(reference speakers). Eigenvoice [4] improved the idea of 
RSW. It applies principal component analysis (PCA) to 
either the covariance or the correlation matrix calculated 
from the reference speakers, to find a set of eigenvectors 
(eigenvoices). Then the new speaker is represented by a 
linear combination of the eigenvoices. When there is a small 
amount of adaptation data, the Eigenvoice approach 
significantly outperforms the MLLR approach. 

Based on quantitative analysis on the spatial correlation 
among different acoustic units [5], Yu proposed a training 
algorithm named “Spatial Constrained Training (SCT)” [6], 
which applies a set of Spatial Constraints to the traditional 
K-Mean Segmental algorithm, and a new adaptation 
algorithm named “Spatial Correlated Maximum a Posteriori 
Adaptation (SC-MAP)” [7], which applies Spatial 
Correlation Assumption to the traditional Maximum a 
Posteriori criteria. Both approaches achieve a good 
performance. 

All the previous approaches focus on the acoustic 
model training or the model adaptation. Our approach, 
named Minimum Covariance based Spatial Correlation 
Transformation (MC-SCT) [8], instead applies the spatial 
correlation information in the decoding process. Based on 
minimum covariance criteria, a transformation matrix is 
determined to find new acoustic features and the 
corresponding models which can achieve better 
discriminative performance. Though the original algorithm 
of this approach achieves competitive performance, two 
issues of the approach can still be improved, 1) the 
estimation of the transformation matrix; 2) the construction 
of the history superverctor. In this paper, a new algorithm 
for estimating the transformation matrix is proposed, in 
which the spatial correlation information among history data 
is utilized in estimating the covariance matrices of the new 
features. Furthermore, a new strategy for constructing the 
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history supervector is applied to the approach, to reduce the 
influence of incorrect state labels. 

This paper is organized as follows. In section 2, we 
review the basic idea and the original algorithm of MC-SCT. 
In section 3, the improvements on the approach are 
introduced. In section 4, we discuss the combination of the 
adaptation approaches and MC-SCT. In section 5, the 
experiment results are presented. Finally, we summarize this 
paper and outline our future work. 

2. BASIC IDEA AND ORIGINAL ALGORITHM OF 
MC-SCT

Let’s assume that the recognition system has got a set of 
observed frame vectors with state labels, ,
called history data, and the current frame vector

nxxx ,,, 21

y . After 
mean normalization, we can assume that all the frames are 
Gaussian random vectors with zero means. And we assume 
that they have a joint Gaussian distribution. Let supervector 

 represent all the history data. And 
use

TT
n
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x and y  to construct a new feature vector 
                    (1) Wxyz
whereW is the transformation matrix. Obviously, the new 
vector z  is also a Gaussian vector with zero mean. And the 
covariance matrix of z  is expressed as: 
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According to the minimum covariance criteria, the 
transformation matrix W is optimized to minimize the 
covariance of vector z , in order that the new feature will 
have better discriminative performance than the original 
feature. The optimum transformation matrix can be 
expressed as: 
             (3) 11][][ xyx
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So the corresponding vector and its covariance can be 
expressed as: 
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If we take frame vector ix as a sample of its 
corresponding state’s observation distribution, we can use a 
set of SD models trained previously to estimate the 
correlation matrices and . For each speaker, a 
supervector is constructed from his SD acoustic model 
parameters according to the state label sequence of
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Let the number of speaker be defined as
is p

P . And define a 
parameter matrix for state , which is given as: 

isU is

                 (7) ],,,[ )()2()1( P
ssss iiii

cccU

Then the autocorrelation matrix and the correlation 

matrix can be expressed as: 
xR

yxR

    T
P

p

Tpp
x UU

P
UU

P
R

11
1

)()(        (8) 

   T
syx UU

P
R

y

1
                      (9) 

where denotes the state ofys y , and 

1

(1) (2) ( )[ , , , ]

n

s

P

s

U

U U U U
U

       (10) 

The final expression of the new vector and its covariance 
can be given as follows: 
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The detail of the derivation can be found in [8]. 

3. IMPROVEMENTS ON MC-SCT 

3.1. A new algorithm for estimating the transformation 
matrix

Since the number of speakers is much less than the 
dimension of the supervector x , the autocorrelation matrix 
estimated in Equation (8) is always rank-deficient, that is, 
non-invertible. In [8] the Moore-Penrose inverse of this 
matrix is adopted to substitute its inverse matrix, which 
causes the result that the covariance of the vector z  is not 
related to the history data, as shown in Equation (12). In 
other words, the spatial correlation information among the 
history data is not used in estimating the new covariance. To 
solve the problem, we propose a new algorithm to estimate 
the transformation matrix. 
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According to Equation (8) and (10), the autocorrelation 
matrix can be reformulated as: 
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ijR represents the correlation between frame ix and

frame jx . Obviously, the autocorrelation of frame ix is

represented by , the covariance matrix of the SD model 

mean vectors of state .
iiR

is

To ensure the autocorrelation matrix xR being full-rank, 

we substitute  with the covariance matrix iiR
isR of

state in the SI model, which enhances the pivot elements 

of
is

xR . Then Equation (13) can be rewritten as: 
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where
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nI s s s )nnR diag R R R R R R     (16) 

According to Woodbury Formula [9], we get 
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Using Equation (17), Equation (4) and (5) can finally be 
rewritten as: 
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Both of them can be accumulated iteratively.  
To reduce the dimension of the matrix in the inverse 

calculation, according to Woodbury Formula, we get: 
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Now the covariance of the new vector is related to the 
history data, as shown in Equation (19). Then the spatial 
correlation information among the history data can be used 
in estimating the new covariance. 

3.2. A new strategy for constructing the history super-
vector

In the original MC-SCT, the history supervector x is
constructed by concatenating all the history frame vectors, 
and the supervectors used to estimate its autocorrelation 
matrix xR are constructed from the SD model parameters 
according to the state sequence of the history data. It means 
that the correlation between two frames is represented by 
the correlation between their corresponding states’ 
parameters, as shown in Equation (14). When MC-SCT is 
applied in the unsupervised mode, since the state labels may 
be not as precise as we expect, the incorrect state labels may 
influence the transformation matrix in an incorrect direction. 

To tackle the above problem, a new strategy for 
organizing history data is considered here. The history 
supervector is not constructed by concatenating all the 
history frames, but the sample mean vectors in the history 
data for the states appearing in the state sequence. Then the 
new history supervector can be expressed as: 

1 2( , , , )T T T T
Mx x x x                     (23) 

where sx denotes the sample mean for state , while s
M denotes the total number of states appearing in the state 
sequence. The influence of incorrect state labels is reduced 
by the sample mean vectors here. 

Then the previous algorithms of estimating the 
transformation matrix can be applied to the new history 
supervector x . In the batch mode, the iterations in Equation 
(20) and (21) should be carried out according to the states 
appearing in x , and the total iteration number is M . In the 
on-line mode, nA should only be accumulated whenever a 

new state appears, but should be updated whenever a new 

frame
nb

nx appears for the sample mean
nsx should be updated.  

4. COMBINATION OF MC-SCT AND ADAPTATION 

i              (21) 
The model adaptation approaches utilize the correlation 
information among different models to adapt the model 
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parameters to fit the speaker and the environment, while the 
MC-SCT approach utilizes the spatial correlation 
information among different acoustic units to find new 
acoustic features which can achieve better discriminative 
performance. Therefore it is desirable to combine the two 
approaches by applying MC-SCT after the model adaptation 
approaches.

5. EXPERIMENT RESULTS 

In order to evaluate the performance of MC-SCT, 
experiments were carried out on a Chinese LVCSR task. 
The speech database was provided by National 863 High 
Technology Project. The training data was collected from 
76 female speakers each with 650 sentences, and the testing 
data from another 7 female speakers, each with the same 
amount of sentences. 

In our recognition system, there are 1254 Chinese 
syllables; each syllable is made up of one initial and one 
final. There are 100 initials and 164 finals in total. As one 
initial is divided into two states and one final into four, each 
syllable is modeled as a six-state HMM. Thus, totally, we 
have 856 states, each being modeled as a single Gaussian 
with full covariance. The acoustic feature vector consists of 
45 features formed by 14 Mel-frequency cepstrum 
coefficients with their 1st and 2nd derivatives and the frame 
energy with its 1st and 2nd derivatives. 

In the experiments, we focus on the acoustic part. The 
speech utterances are recognized to be free syllable strings 
without any grammar constraints, and the result is organized 
into syllable-lattices. No language model is used, and the 
Syllable Error Rate (SER) results are reported for 
performance evaluation. 

For convenience, we use SCT1 here to denote the 
original MC-SCT, and SCT2 to denote the improved 
approach proposed in this paper. To evaluate the two 
schemes of MC-SCT, we compared their performance with 
MLLR (LR) and Eigenvoice (EV), and the combinations of 
SCT2 and LR/EV. Experiments were carried out in 
unsupervised, enrolled and batch mode. For each test 
speaker, an increasing number of sentences were used as 
history data, with the recognition result of the SI model as 
the state labels, while all the sentences were used as test 
data. The average result is shown in Table 1. 

Table 1 Comparison of SER (%) for MC-SCT, MLLR and EV 

nSent LR EV SCT1 SCT2 LR+
SCT2

EV+
SCT2

0 28.87 28.87 28.87 28.87 28.87 28.87
1 29.11 27.03 29.50 27.69 27.95 28.25
5 28.41 26.10 26.13 26.19 27.36 26.07

10 28.82 25.74 25.77 25.69 27.96 25.50
50 26.85 25.36 25.28 25.04 25.76 24.80
100 27.56 25.29 25.20 24.73 26.69 24.62
200 27.02 25.20 25.09 24.54 25.99 24.45

As shown in Table 1, the new scheme does improve the 
performance of MC-SCT. Compared with the adaptation 

approaches, MC-SCT is very competitive. It nearly always 
outperforms MLLR in the unsupervised mode, and shows 
more and more advantage over EV when the sentence 
number is larger than 10. On the other hand, when MC-SCT 
is applied based on MLLR or EV, it always improves the 
performance of the baseline. But the combinations’ 
performance is not always better than MC-SCT itself. 

6. CONCLUSION 

Spatial correlation information is useful knowledge source 
to improve the performance of the speech recognition 
system. Minimum Covariance based Spatial Correlation 
Transformation (MC-SCT) has shown its effectiveness in 
utilizing spatial correlation information in decoding process. 
This paper proposes the improvements on two issues of 
MC-SCT, 1) the estimation of the transformation matrix; 2) 
the construction of the history superverctor. Experiment 
results show that the improvements obtain more advantage 
over adaptation approaches, and that MC-SCT can be 
combined with adaptation approaches in the same 
recognition system. 

The current MC-SCT approach is sentence-based. 
Further study is necessary to improve it to be a frame-based 
approach, which will improve the Viterbi decoding process 
by using all the frames having appeared. 
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