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ABSTRACT

In this paper, we propose a two-step processing algorithm which
adaptively normalizes the temporal modulation of speech to extract
robust speech feature for automatic speech recognition systems. The
first step processing is to normalize the temporal modulation con-
trast (TMC) of the cepstral time series for both clean and noisy
speech. The second step processing is to smooth the normalized
temporal modulation structure to reduce the artifacts due to noise
while preserving the speech modulation events (edges). We tested
our algorithm on speech recognition experiments in additive noise
condition (AURORA-2J data corpus), reverberant noise condition
(convolution of clean speech utterances from AURORA-2J with a
smart room impulse response), and noisy condition with both rever-
berant and additive noise (air conditioner noise in a smart room).
For comparison, the ETSI advanced front-end (AFE) algorithm was
used. Our results showed that the algorithm provided: (1) for addi-
tive noise condition, 57.26% relative word error reduction (RWER)
rate for clean conditional training (59.37% for AFE), and 33.52%
RWER rate for multi-conditional training (35.77% for AFE), (2) for
reverberant condition, 51.28% RWER rate (10.17% for AFE) and (3)
for noisy condition with both reverberant and additive noise, 71.74%
RWER rate (48.86% for AFE).

Index Terms— robust speech recognition, temporal modulation
contrast normalization, cepstral mean and variance normalization,
modulation transfer function.

1. INTRODUCTION

In order to improve the noise robustness of automatic speech recog-
nition (ASR) systems, many methods had been proposed, for exam-
ple, spectral subtraction, Wiener filtering, etc. [1]. Most of them
focus on reducing the noise effect in spectral domain. This strategy
is based on the findings of noise effect on speech spectrum in a short-
term period of speech samples (10 ms to 40 ms time window). How-
ever, as many researches showed that in the spectral domain speech
spectrum is easily distorted either by additive noise or convolutive
(reverberant) noise. In pursuing to find robust representations, many
studies are done to find which information is essential for speech per-
ception and robust to noise distortion. Recently, more and more evi-
dences show that the temporal modulation structures (TMSs) are im-
portant for speech perception and relatively robust to noise environ-
ments [2, 3, 4]. Many experiments of speech perception show that
the temporal modulation is an important cue for speech intelligibil-
ity. Drullman et al. carried out perception experiments and showed
that most of the intelligibility information of speech is under 16 Hz
[2]. Moreover, as showed by Shannon et al., if the TMSs are kept
well with spectral information greatly reduced, the speech still keeps
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Fig. 1. Noise effect as modulation transfer function.

high intelligibility [3]. Based on these knowledge, some speech fea-
ture extraction methods were proposed. For example, relative spec-
tra (RASTA) filtering [5], cepstral mean normalization (CMN), tem-
poral trajectory filtering. The aim of those methods is to enhance the
TMSs of speech. However, most of them usually adopt an average
modulation information of speech for designing the modulation fil-
ters. For modulation information of speech which corresponds to the
dynamic movement of articulators and multi-scale temporal organi-
zation of utterances actually distributes in a large range of modula-
tion frequencies. For example, the TMSs of consonants and vowels
are different, and the time scale of TMSs of syllables and phonemes
are different. Therefore, it is better to find out an adaptive mod-
ulation filtering strategy to enhance the modulation information of
speech with different local and global TMSs.

The purpose of this paper is to investigate the noise effects on
modulation spectrum of speech in which the noise effect is regarded
as modulation transfer function (MTF) either for additive noise or
reverberant noise. Based on the investigation, we propose an adap-
tive speech processing strategy to extract robust speech features for
ASR systems.

2. NOISE EFFECT ON TEMPORAL MODULATION OF
SPEECH

In noisy environments, either reverberant noise or additive noise, the
clean speech signal (speaker) is transmitted to the microphone (re-
ceiver) via a transmission environment, in terms of the transmission
system concept, the transfer relation between clean speech and ob-
served noisy observation is shown in Fig. 1.

In Fig. 1, Ω is the modulation frequency. X(Ω) and Y (Ω) are
the modulation spectra of clean and observed speech signals. In this
sense, the noise effect can be regarded as an MTF H(Ω). The MTF
can be used as a low pass filter, high pass filter or a noise-dependent
complex filter. The original MTF concept is referred to the tempo-
ral envelope modulation (usually in each frequency sub-band), but it
can be the transformed TMS based on the temporal envelope modu-
lation. Given the fact that most current ASRs use the static and dy-
namic properties of the mel frequency cepstral coefficients (MFCCs)
as speech feature, we investigate the noise effect on temporal mod-
ulation of the cepstral coefficient, and the temporal modulation is
referred as the cepstral TMSs hereafter.
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Fig. 2. Modulation spectrum in (a) additive noise and (b) reverberant
noise conditions.

In additive noise condition, the noise energy may mask the
speech energy, especially in the time locations of low speech energy.
Correspondingly, in the cepstral domain, the temporal modulation
contrast (TMC) may be changed, and the low or high temporal mod-
ulation fluctuations may be attenuated or enhanced. In reverberant
condition, the effect of reverberant noise is to diffuse the high en-
ergy peaks of speech to the later speech components. If the diffusion
energy is higher than the later speech energy, the later speech com-
ponents will be masked. The effect of the reverberation depends on
the reverberant time (RT) of the room and speaker to microphone
distance (SMD). Generally speaking, the transfer function of the
additive noise transfer system has low-pass filtering property which
is closely related with the signal to noise ratio (SNR), while the
transfer function of the reverberant room can be regarded as a low
pass filtering on the temporal envelope structure which is closely
related with the RT and SMD [6].

For examining the noise effects on speech, we choose one utter-
ance in clean, and two noisy (train noise) conditions from AURORA-
2J data corpus [8] with SNR of 20 dB and 10 dB. The MFCCs are
calculated with 20 ms frame length and 10 ms frame shift. We then
calculate the spectrum of the cepstral time series to investigate the
noise effect on the modulation information of speech. For reverber-
ant noise condition, we adopt the similar processing procedures. The
reverberant speech is artificially generated by convolution between
the clean speech (the same utterance as used for additive noise con-
dition) with the impulse response of a smart-room (with RT of 650
ms) [7]. In both additive and reverberant noise conditions, the mod-
ulation spectrum is calculated using smoothed power spectrum of
the cepstral time series. The modulation spectrum figures of the first
order cepstral coefficient of clean and noisy speech are shown in
Fig. 2. From Fig. 2a, it was found that, in noisy conditions, the
low modulation components (less than 1 Hz) are enhanced, while
the high modulation components (larger than 1 Hz) are attenuated.
This modulation spectrum change shows that the MTF of the noise
effect can be regarded as a low pass filtering to the cepstral tempo-
ral modulation, the lower the SNR, the smaller the end frequency of
the filter. For reverberant condition, as shown in Fig. 2b (the two
reverberant conditions correspond to the SMD with d = 100 cm and

d = 300 cm), we can see that in reverberant condition, the MTF of
the room acoustic has similar effect for the modulation spectrum as
that in additive noise condition. But there are some differences in
the changes in modulation components, for example, the low mod-
ulation components are enhanced (less than 4 Hz), while the high
modulation components are attenuated (larger than 5 Hz). Either in
additive noise or reverberant condition, the enhancement of the low
modulation components while attenuating of the high modulation
components means that the TMC of the time series is decreased.

3. PROPOSED TWO-STEP PROCESSING FOR
TEMPORAL MODULATION NORMALIZATION

From section 2, we get the general conclusion of the noise effects on
the temporal modulation spectrum of the cepstral coefficients, i.e.,
the TMC is decreased, and the high temporal modulation compo-
nents are attenuated. Correspondingly, for reducing the noise effect,
we should normalize these two effects for the noisy speech. We
propose to use TMC normalization and edge-preserved smoothing
algorithm to process the time series of cepstral coefficients thus to
attenuate the noise effects.

3.1. Temporal modulation contrast (TMC) normalization

In some robust speech feature extraction methods for TMC enhance-
ment, the dynamic range normalization is implicitly used. For ex-
ample, the cepstral mean and variance normalization (CMVN) is of-
ten used. In our study, we find that we can explicitly use the dy-
namic range normalization processing to reduce the difference be-
tween clean speech and noisy speech either for additive noise or
reverberant noise. However, for simplicity, in this study, we still
adopt the CMVN as the dynamic range normalization processing.
The CMVN is used as

ĉ (k, t) =
c (k, t) − c̄ (k, t)

σ (k)
, k = 0, 1, · · · , (1)

where c(k, t) is the k-th cepstral coefficient with time index t. The
cepstral mean c̄(k, t) and the standard deviation σ(k) are calculated
as follows.

c̄ (k, t) =
1

N

N∑
t=1

c (k, t), (2a)

σ (k) =

√√√√ 1

N

N∑
t=1

(c (k, t) − c̄ (k, t))2 . (2b)

In Eq. (2), N is the number of frames of the processed utter-
ance. Traditionally, the CMVN is usually explained as to normalize
the distribution of speech feature to be standard Gaussian distribu-
tion. In our MTF concept, it is explained as the TMC normalization
which is used to equalize the modulation depth similar as used in im-
age processing. After this CMVN processing, all the TMC of clean
and noisy utterances are normalized to be in the same level, i.e., the
TMC for noisy speech is enhanced as the same level of that of clean
speech.

3.2. Edge-preserved smoothing on contrast normalized feature

In our study, we found that after the TMC normalization, there are
some abrupt TMSs caused by the non-stationary noise, we need to
smooth out those modulation components which are produced by the
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noise artifacts while keeping speech modulation events unchanged.
As suggested that most of the intelligibility information of speech
is distributed in the low modulation frequency range (between 2 Hz
and 16 Hz) [2, 5]. Following this idea, many temporal filtering meth-
ods are proposed. Most of them try to design a filter with modulation
frequency in the range of speech modulation. Even some filters are
estimated using data-driven methods. However, most of them adopt
the average property of the speech modulation [5, 9]. For example,
in the RASTA filtering, the filtering pass-band frequency range is
around 0.2 Hz-16 Hz. It is better to adopt an adaptive filtering strat-
egy to enhance speech modulation boundaries. Based on this con-
sideration, we propose to use edge-preserved filtering to smooth the
temporal trajectory while keeping the speech modulation boundary
information [10]. The smoothing filter is designed as follows.

c̃ (k, t) =

m∑
i=−m

wk (t, i) ĉ (k, t − i)

m∑
i=−m

wk (t, i)
, k = 0, 1, 2, · · · (3)

In Eq. (3), wk(t, i) is the weighting coefficient, m is the smooth-
ing step order. The weighting coefficient is calculated as:

wk(t, i) = wkS (t, i) · wkR(t, i), k = 0, 1, 2, · · · (4)

wkS (t, i) = exp

{
−d2

S (t, t − i)

2σ2
S

}
(5a)

wkR (t, i) = exp

{
−d2

R (ĉ (k, t) , ĉ (k, t − i))

2σ2
R

}
. (5b)

In Eq. (5), d2
S(t, t − i) is the Euclidian distance between time step

t and t − i; the d2
R(ĉ(k, t), ĉ(k, k − i)) is the Euclidian distance

between the values of ĉ(k, t) and ĉ(k, t − i); the wkS formed as a
Gaussian filter is used to smooth the time trajectory, while the wkR is
used to keep the speech modulation regions by reducing the diffusion
of different modulation events by considering the difference of the
neighboring temporal values. By adjusting the controlling variances
of the two parts σ2

R and σ2
S , we can adaptively smooth the noise

artifacts while keeping certain speech temporal modulation events
(edges).

4. EVALUATIONS AND SPEECH RECOGNITION
EXPERIMENTS

By the TMC normalization and edge-preserved smoothing, the tem-
poral modulation of the cepstral coefficient of noisy speech is ex-
pected to be closer to that of the clean speech than the un-processed
ones. The recognition performance based on the normalized cepstral
coefficients should be improved.

4.1. The effects of the normalization processing on the temporal
modulation structure

In order to show the effect of the temporal normalization processing,
we apply this processing on the same speech utterance in clean and
noisy conditions as used in section 2. For additive and reverberant
noise conditions, the results for the first order cepstral coefficient are
shown in Fig. 3. Comparing Figs. 2a and 2b with Figs. 3a and
3b, we can see that after the normalization processing, the TMSs of
noisy speech are more close to those of clean speech, especially in
the modulation frequency range between 2 Hz and 20 Hz.
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Fig. 3. Modulation spectrum after normalization processing for (a)
additive noise and (b) reverberant noise conditions.

Table 1. Recognition rates and relative improvement (%)

Clean training Set A Set B Set C Overall Relative

Baseline 46.78 48.21 49.44 47.91 —

AFE 79.43 77.96 75.88 78.13 59.37
Proposed 76.42 78.73 74.67 77.00 57.26

Multi-training Set A Set B Set C Overall Relative

Baseline 88.66 79.96 82.67 83.98 —

AFE 93.21 88.88 90.63 90.96 35.77
Proposed 91.78 89.43 90.82 90.65 33.52

4.2. Speech recognition experiments

We tested the proposed normalization algorithm on speech recog-
nition task in both additive noise and reverberant conditions in the
following subsections.

4.2.1. Speech recognition in additive noise condition

The AURORA-2J data corpus was used in our experiments for addi-
tive noise condition test. The feature type and acoustic models used
were the same as those used in the AURORA-2J experiments. For
comparison, the ETSI advanced front-end (AFE) which is one of the
best front-end processors was used [11]. The recognition results for
clean and multi-conditional training are shown in Table 1. In Table
1, the recognition rates are the average for SNRs from 20 dB to 0 dB.
The recognition rates in column with “Overall” means the average
for testing sets A, B, and C. The column with “Relative” means rela-
tive improvement compared with baseline. From Table 1, we can see
that the performance of the proposed algorithm can be comparable
with that of the ETSI AFE algorithm for the additive noise condition.

4.2.2. Speech recognition in reverberant condition

For speech in reverberant condition, we used clean speech from the
AURORA-2J database as the speech material. 8840 clean speech
sentences were used to train the acoustic models. 1001 clean speech
sentences convolved with the impulse responses of a smart room
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Fig. 4. Speech recognition under reverberant environment.

Table 2. Recognition rates (%) for noisy condition with both rever-
berant noise and additive noise

Method Cond. 1 Cond. 2 Cond. 3 Cond. 4

Baseline 72.97 43.97 59.69 30.15

AFE 82.87 77.31 71.90 69.09

Proposed 90.93 87.29 84.31 82.87

were used as testing speech. The impulse responses depended on the
speaker to microphone distances [7]. The feature type and acoustic
models are configured the same as those used in AURORA-2J exper-
iments. The recognition results are shown in Fig. 4. From Fig. 4, we
can see that the proposed temporal modulation normalization algo-
rithm significantly improve the robustness of speech recognition in
the reverberant condition. Compared with the baseline performance,
by averaging the recognition rates with SMD from 0.01 m to 4 m,
our proposed algorithm has 51.28% relative improvement which is
higher than that of ETSI AFE (10.17% relative improvement).

4.2.3. Speech recognition in noisy environment with both additive
and reverberant noise

In real noisy environments, both reverberant and additive noise were
presented. In order to examine the effectiveness of the proposed al-
gorithm in those noisy environments, we simulated the real noisy en-
vironments by adding air conditioner noise to the reverberant speech
in the smart room with regard to the SMD and SNR. Four test-
ing conditions were simulated as: (Cond. 1) SMD=100 cm with
SNR=20 dB, (Cond. 2) SMD=100 cm with SNR=10 dB, (Cond. 3)
SMD=200 cm with SNR=20 dB and (Cond. 4) SMD=200 cm with
SNR=10 dB. The feature types and acoustic models are the same as
used in the subsections 4.2.1 and 4.2.2. The recognition results are
shown in Table 2. From Table 2, we can see that, both the AFE and
proposed algorithms improved the performance significantly in the
real environment for the noisy speech recorded using the distance
microphone. Especially, on average of the four testing conditions in
Table 2, our proposed algorithm has relative improvement of 71.74%
which outperforms the ETSI AFE algorithm with 48.86% relative
improvement compared with the baseline performance.

5. CONCLUSION AND DISCUSSION

In this paper, we analyzed the noise effects on the TMSs of cepstral
coefficients. Based on the analysis, we found that the noise not only
changes the TMC (or dynamic range), but also attenuates high mod-
ulation components. Based on these findings, we proposed the TMC
normalization (or dynamic range normalization) and edge-preserved

smoothing to process the temporal modulation of cepstral coeffi-
cients. The purpose for the normalization is to normalize the TMS of
noisy speech to those of clean speech. The proposed algorithm was
tested on speech recognition in both additive and reverberant noise
conditions. Compared with baseline algorithm, for additive noise,
we got relative improvement of 57.25% for clean training condition,
and 33.52% for multi-conditional training; for reverberant noise con-
dition, we got 51.28% relative improvement; and for noisy condition
with both reverberant and additive noise, we got 71.74% relative im-
provement (averaging on the four testing conditions in Table 2).

For more complex and adverse noise conditions, for example, in
competitive speakers’ speech, the MTF for the target speech is more
complex. However, the sound sources possibly have different tem-
poral modulation structures which are distributed in the temporal-
frequency space. One source usually synchronizes its temporal mod-
ulation structure which is an important cue for separating interfere
sound to solve this kind of cocktail party problem [4]. This will be
our future work and final goal.
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