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ABSTRACT

The popular mel-frequency cepstral coefficients (MFCCs)

capture a mixture of speaker-related, phonemic and channel

information. Speaker-related information could be further

broken down according to articulatory criteria. How these

underlying components are exactly mixed in the features is

not well understood. To this end, in this paper we aim at

separating the spectra of glottal source and vocal tract us-

ing glottal inverse filtering, with an application to speaker

recognition over telephone lines. Our experiments on the

10sec-10sec condition of the NIST 2006 SRE corpus suggest

that the mel-frequency cepstrum of the voice source is not

too useful for recognizing speakers. On the contrary, fusing

the vocal tract spectrum with conventional MFCCs improves

accuracy, suggesting that vocal tract information should be

enhanced.

Index Terms— Glottal inverse filtering, speaker recogni-

tion, source-filter model, mel-frequency cepstrum

1. INTRODUCTION

Cepstral features [1] such as mel-frequency cepstral coef-

ficients (MFCCs) and linear predictive cepstral coefficients

(LPCCs) have been the dominant features for a long time

in speaker recognition. Cepstral features mainly capture

properties of vocal tract and they are standard features in

speech recognition since the vocal tract contains the major

“message-bearing” articulators. Since MFCCs capture a mix-

ture of phonemic and speaker-related information their use

has resulted in excellent performance in speaker recognition.

The question of how these two factors are exactly mixed in

the feature coefficients is largely unanswered.

Since MFCCs depend on the spoken text, their use re-

quires sufficient phonetic coverage in the training and test

data for reliable recognition. For instance, state-of-the-art

speaker recognition systems utilizing MFCCs achieve re-

spectable performance (error rates ∼ 2 %) when minutes
or tens of minutes of training and test data is available [2].

In contrast, the results deteriorate by an order of magni-

tude (error rates ∼ 20 %) when only 10 seconds of data is

available. There is a clear need for features that are truly

text-independent and whose performance is less dependent

on the amount of data.

A potential candidate for text-independent features would

be voice source features, that is, features that characterize the

source of voiced sounds known as the glottal volume velocity
waveform or simply the glottal flow. The most popular voice

source feature is the rate of vibration of the vocal folds, re-

ferred to as the fundamental frequency (F0). Other parameters

describe the shape of the glottal pulse, such as the duration of

the closing phase, and the corresponding frequency domain

effects. These contribute to voice quality which can be de-

scribed for example, as modal, breathy, creaky or pressed [3].

It can be hypothesized that these parameters also carry useful

speaker-specific information.

When estimating the glottal flow, a common assumption

is to consider the glottal source and the vocal tract filter to

be linearly related and independent from each other. These

simplifications allow one to first estimate the vocal tract fil-

ter parameters using, for example, the well-known linear pre-

diction (LP) model (e.g. [1]). Once the vocal tract filter is

known, or reasonably-well estimated, an estimate of the glot-

tal flow can be obtained by filtering the original signal using

the inverse model of the tract. The process is referred to as

glottal inverse filtering and illustrated in Fig. 1. The glottal

flow can be parameterized, for instance, by fitting a physical

glottal flow model to the inverse filtered signal [4]. Other ap-

proaches include wavelet transforms [5], residual phase [6],

cepstral coefficients [7, 8] and higher-order statistics [8] to

mention a few.

Often the residual signal obtained from autocorrelation

LP analysis (e.g. [5, 6, 8, 9]) is used as a crude estimate

of the glottal flow (derivative) waveform. An alternative ap-

proach uses closed-phase covariance analysis during the por-

tions when the vocal folds are closed [4, 7, 10]. This leads to

improved estimates of the vocal tract and glottal flow. On the

other hand, accurate detection of closed phase is required and

can be difficult in the presence of noise or in soft phonation.

In this paper, our main goal is to decompose the mag-

nitude spectral features of speech into the underlying pro-

cesses corresponding to the vocal tract filter and the glottal

voice source. This would lead to a better understanding of
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Fig. 1. An example of glottal inverse filtering. A speech sig-

nal (top), LP residual (middle) and IAIF output (bottom).

the speaker discrimination power of the individual compo-

nents. Interestingly, an approach close to ours was utilized

in a recent study [7], in which the closed-phase covariance

analysis was used for extracting the vocal tract information.

Both the voice source and the filter were parameterized using

mel-cepstrum. The vocal tract cepstrum was computed from

the spectral envelope obtained from the closed-phase analysis,

whereas the source cepstrum was computed as the difference

between the MFCCs and the vocal tract cepstrum.

Our work differs from [7] in that we use a more straight-

forward iterative adaptive inverse filtering (IAIF) method

[11] rather than a closed phase covariance analysis in the

source-tract separation. In this way, we avoid the most critical

part of the closed phase analysis, the glottal closure detection,

and we obtain both the vocal tract and the source parameters

simultaneously with a smaller computational cost. Further-

more, the experiments of [7] were reported on TIMIT and

YOHO databases consisting of high-quality studio record-

ings. We report our results on the more challenging NIST

2006 corpus with telephone transmission and channel vari-

ability.

2. SOURCE AND FILTER SEPARATION

A flowchart of the feature extraction process is shown in Fig.

2. The IAIF method helps in separating the source- and filter-

related features. We extract three synchronous feature streams

that aim at capturing complementary properties of the speech

signal. In the following subsections we detail each of the

components.

2.1. Glottal Flow Estimation Using IAIF

The IAIF method [11] is a straightforward glottal inverse fil-

tering method that estimates the glottal flow. IAIF estimates

the contribution of the glottal source to the speech spectrum

Fig. 2. Using IAIF to separate the source (ie. the glottal flow)

and the filter (ie. the vocal tract) components.

with low-order (order q) all-pole modeling during several fun-

damental periods. By canceling the estimated effect of the

source, an all-pole model of order p for the vocal tract is

computed either with LP [11] or with discrete all-pole (DAP)

model [12]. This computation is executed in a repetitive man-

ner consisting of two phases. The detailed description of the

IAIF algorithm including its flow diagram can be found in

[11, 12]. In this paper, we have selected to use the LP as a

vocal tract model due to its better computational efficiency.

Typical orders of the vocal tract and glottal source filters are

8 ≤ p ≤ 14 and 2 ≤ q ≤ 4, respectively.

It is also worth emphasizing that even though IAIF uses

LP as a computational tool, it is, in principle, greatly differ-

ent from the approach in which the LP residual is treated as

a crude estimate of the glottal flow. In the IAIF computation,

namely, the spectral decay of the estimated glottal excitation

is allowed to vary, thus enabling mimicking the spectral be-

haviour of the true glottal flow generated by the vocal fold

fluctuation. In turn, the LP residual is always spectrally flat

due to use of a single LP analysis and as a result, it does not re-

flect properly the frequency domain features of the true glottal

excitation.

2.2. Feature Extraction

We consider three feature sets in this study as illustrated

in Fig. 2. Our baseline features, shown on the leftmost

signal path are the conventional MFCCs. The process-

ing steps shown in the figure are fairly standard in cur-

rent speaker recognition front-ends for telephone quality

speech. Firstly, 12 MFCCs are extracted from 30 millisecond

Hamming-windowed frames with 50 % overlapping. The

MFCCs are computed using a 27-channel filterbank, fol-
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lowed by logarithmic compression and discrete cosine trans-

form (DCT). The filterbank consists of triangular bandpass

filters spaced uniformly on the mel-frequency scale defined

as fMel = (1000/ log10 2) · log10(1+fHz/1000). Here, 1000

Hz is chosen to correspond to 1000 Mels. To improve robust-

ness against convolutive distortions, the MFCC streams are

processed with RelAtive SpecTrAl (RASTA) filter. Next, the

delta (Δ) and double-delta (Δ2) coefficients are computed

using a differentiator and appended to the feature vectors.

Finally, only voiced frames are retained, followed by normal-

ization of each feature to have zero mean and unit variance

over the entire utterance. This last normalization further re-

duces channel effects and equalizes the numeric ranges of the

features.

The second feature set, which we dub as the source mel-
frequency cepstral coefficients (SMFCCs), aims at capturing

the frequency-domain characteristics of the voice source. The

computation follows exactly the same steps as MFCC pro-

cessing, except that the input is the estimated glottal flow

rather than the original speech frame. We had two motiva-

tions to study such a feature in the beginning of this work.

Firstly, the method is straightforward and readily integrable

into existing systems. Secondly, comparing accuracies of the

MFCC and SMFCC features would lead to better understand-

ing of the intrinsic speaker discrimination power of the source

and filter features.

The third and last feature set aims at capturing the

frequency-domain characteristics of the vocal tract filter.

These features are derived by converting the filter coefficients

obtained from IAIF into an equivalent but more robust repre-

sentation of the line spectral frequencies (LSFs) (e.g. [1]). In

order to make explicit distinction from typical computation

of LSFs with a single LP analysis on a speech frame, we refer

to the new feature set as the filter line spectral frequencies
(FLSFs). Note that, unlike MFCCs and SMFCCs, the FLSFs

neither undergo psychoacoustically motivated transforma-

tions nor processed by RASTA filtering. The RASTA filter

is designed for cepstral and log-spectral features to attenuate

the low and high modulation frequencies. It is not obvious

whether such procedure applies to LSFs.

2.3. Frame Dropping

Frame dropping uses a combination of energy and period-

icity information to select voiced frames. Both the energy

detector and the periodicity detector make binary decision

on each frame, which are then combined by logical “AND”

operator to give the final frame labels. Short-term energy

is measured from the original frame and normalized by the

maximum energy over all frames, followed by thresholding

(here, we set the energy difference to 30 dB). For the voic-

ing detector, we first compute the autocorrelation sequence

of the glottal flow g[n] as Rg[l] =
∑N−l−1

n=0 g[n]g[n − l]
for lmin ≤ l ≤ lmax and detect the lag corresponding to

the maximum value. By denoting this lag as l∗, the frame

is marked as voiced if the energy-normalized autocorrelation

value Rg[l∗]/R[0] exceeds a pre-set threshold value (here,

0.65). The lag range [lmin, lmax] is set according to expected

fundamental periods (here we consider F0 values from 80 Hz

to 500 Hz).

3. EXPERIMENTAL SETUP

We report our results on the 10sec-10sec condition of the

2006 NIST speaker recognition evaluation (SRE) corpus.

Each training and test utterance contains approximately 10

seconds of speech. The condition consists of 33555 verifica-

tion trials (3064 genuine speakers and 30491 impostors) from

732 target speakers (415 females and 316 males).

We use a standard Gaussian mixture classifier with diago-

nal covariance matrices [13]. Two gender-dependent univer-

sal background models (UBMs) are trained with the expec-

tation maximization (EM) algorithm from the 1-conversation

training files of the NIST 2004 SRE corpus, including 246

males and 370 females. A relevance factor of 16 is used to

adapt the target models. Only the mean vectors are adapted.

In the recognition phase, 10 top-scoring Gaussians from the

UBM are used in the fast log-likelihood ratio computation

[13].

In the experiments, the speech signal is high-pass filtered

with a 50-tap linear-phase FIR filter with a cut-off frequency

of 60 Hz to remove possible low-frequency noise compo-

nents that could adversely affect inverse filtering. We fixed

the source and filter LP analysis orders in the IAIF method to

p = 12 and q = 4. The value p = 12 was mainly chosen so as

to have an equal dimensionality for all the three feature sets

considered.

In evaluating accuracy, we use two well-known metrics.

The first one, equal error rate (EER), corresponds to the de-

cision threshold that gives equal false acceptance rate (FAR)

and false rejection rate (FRR). The second one, minimum de-
tection cost function (MinDCF), punishes heavily false accep-

tances. It is used in the NIST SRE evaluations and defined as

the minimum value of the function 0.1×FRR+0.99×FAR.

4. RESULTS

We first study different combinations of the base coefficients

and delta features for each feature set as shown in Table 1.

The conventional MFCC features (EER 25∼30 %) clearly

outperform the source-related SMFCC features (EER ≈ 40

%) whereas the accuracy of the filter-related FLSF features

(EER ≈ 30 %) is only slightly worse than that of the MFCCs.

Appending the first order deltas with base coefficients always

improves accuracy, whereas adding the second order deltas

does not make much difference. The detection error trade-off

(DET) curves, not shown here due to page limitations, con-

firmed this last observation.
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Table 1. Accuracy on the 10sec-10sec condition of the NIST

2006 SRE corpus, equal error rates (EER %).

Feature Model order (# Gaussians)

M = 32 M = 64 M = 256
Baseline features

MFCC 28.3 27.7 27.2
MFCC + Δ 27.8 26.4 25.8
MFCC + Δ + Δ2 27.7 27.0 26.0
Source features

SMFCC 40.3 40.5 40.9

SMFCC + Δ 39.7 39.5 39.1
SMFCC + Δ + Δ2 39.1 39.3 38.8
Filter features

FLSF 31.5 30.7 30.3
FLSF + Δ 30.9 30.2 29.1
FLSF + Δ + Δ2 31.6 30.6 29.9
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Fig. 3. Fusing different features by linear match score weight-

ing. Optimum points are indicated by circles.

Next, we study fusion of the different feature set pairs by

considering the base coefficients with first order deltas and

having GMMs with 256 Gaussians. We normalize the scores

of each classifier to have zero mean and unit variance, fol-

lowed by linear score combination of the form wLLR1 +
(1−w)LLR2. Here, LLR{1,2} are the log-likelihood ratios of

the individual classifiers and 0 ≤ w ≤ 1 is the combination

weight. Both the EER and MinDCF values are displayed in

Fig. 3 as a function of the combination weight. The SMFCC

features do not fuse with the MFCC or the FLSF features,

whereas fusing MFCC and FLSF features slightly improves

accuracy. It is interesting to notice that the optimum fusion

weight in this case is close to w = 0.5 for both error crite-

ria, suggesting that both features are equally important. Re-

garding relative accuracies of individual features, the order

of the source- and filter-related features is consistent with [7]

for entirely different corpora. Enhancing the filter rather than

source contribution in the magnitude spectrum seems there-

fore helpful.

In this study we used a relatively simple GMM-UBM sys-

tem, yielding accuracy EER∼25 % for MFCCs. More ad-

vanced systems such as joint factor analysis (JFA) compen-

sated GMMs using MFCCs achieve EER∼17 % on the same

data [14]. In future it would be interesting to study the pro-

posed features with JFA. The results should be also validated

under broader test conditions by varying training/test data du-

rations, channel conditions and level of text mismatch.

5. CONCLUSIONS

We have studied separation of the voice source and the vocal

tract in speaker recognition. Preliminary results suggest that

the cepstrum of the voice source is not a useful feature for

telephony speech. In contrary, vocal tract features were com-

petitive with MFCCs, and fusing these two features improved

accuracy, indicating importance of the vocal tract spectrum.

Our future plan includes studying alternative parameteriza-

tions for the filter (cepstrum, psychoacoustically motivated

transformations) and exploring time-domain parameters of

the source. Comparisons with other popular features like

PLPs, LFCCs and LPCCs would also be interesting.
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