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ABSTRACT
Maximum-Likelihod Linear Regression (MLLR) transform co-

efficients have shown to be useful features for text-independent
speaker recognition systems. These use MLLR coefficients com-
puted on a Large Vocabulary Continuous Speech Recognition Sys-
tem (LVCSR) as features and Support Vector machines(SVM) clas-
sification. However, performance is limited by transcripts, which
are often erroneous with high word error rates (WER) for spon-
taneous telephone speech applications. In this paper, we propose
using lattice-based MLLR to overcome this issue. Using word-
lattices instead of 1-best hypotheses, more hypotheses can be con-
sidered for MLLR estimation and, thus, better models are more
likely to be used. As opposed to standard MLLR, language model
probabilities are taken into account as well. We show how sys-
tems using lattice MLLR outperform standard MLLR systems in
the Speaker Recognition Evaluation (SRE) 2006. Comparison to
other standard acoustic systems is provided as well.

Index Terms— Speaker recognition, MLLR, lattice

1. INTRODUCTION
Recent approaches to text-independent speaker recognition

focus on finding alternative features to cepstral coefficients. These
coefficients are typically sensitive to many factors of acoustic and
linguistic variability that can mask speaker information, namely
message and channel variability[1]. Modeling these undesired
variabilities for its compensation is a common way to reduce
their intra-speaker variance, thus improving discrimination among
speakers. Conversely, increasing inter-speaker variance directly,
i.e. finding more speaker-relevant and robust features, can be seen
as leading to the same goal.

The time-dependent nature of cepstral coefficients is a draw-
back for certain modeling paradigms such as Support Vector
Machines (SVM). A common approach to overcome this issue
is mapping the variable-length sequence into a fixed-length
vector, where each of its coefficients operates over the whole
sequence. These fixed-length feature vectors, which are often
high-dimensional, are aimed at representing speaker-related
characteristics in a more compact way. Polynomials and radial
basis functions have been used as mappings in [2]. However, much
more complex mappings can result in interesting fixed-length
feature vectors. In this sense, Gaussian Mixture Model (GMM)
[3] Supervectors and Maximum-Likelihood Linear Regression
(MLLR) transforms as features [4, 5, 6, 7] have been proposed
in the last years. These high-dimensional feature vectors lie in
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very sparse vector spaces. Support Vector Machines (SVM) have
shown significant robustness under these assumptions [8], be-
coming a predominant modeling framework in speaker recognition.

MLLR transforms as features were first used in speaker recog-
nition in [4]. Systems estimate one or several MLLR transforms
using speaker-independent Gaussian models, either GMMs or
Hidden Markov Models (HMM), and the adaptation data for a
speaker. These affine transforms capture the difference between
the speaker-independent model and the speaker-adapted model.
The resulting matrix coefficients are used as features. Systems
using GMM for MLLR computation do not require transcripts
and are language-independent whereas systems using phonemic
HMMs from Large Vocabulary Continuous Speech Recognition
(LVCSR) systems do. However, performance of the latter is
considerably higher. Other similar approaches using constrained
MLLR (CMLLR) [9] have also been proposed in the literature
[6, 7].

When used in a LVCSR system, MLLR adaptation requires
transcripts as well as a pronounciation lexicon. Speech data are
aligned against the acoustic models corresponding to the given
transcript. However, automatic transcripts on telephone speech
tend to be errorful with typical error rates higher than 20%. In such
situation we take the risk of not using the correct acoustic models
by using the 1-best hypothesis only. In this paper, we use the word
lattices produced on a first-pass decoding of a LVCSR system as
reference to compute the MLLR transforms, thus accounting for
the erroneous transcripts. The resulting MLLR transforms are then
used as features by rearranging their coefficients into vector form.

This paper is organized as follows: Section 2 introduces MLLR
and Section 3, lattice MLLR. Section 4 describes feature extrac-
tion. The experimental set-up as well as the evaluation task are
detailed in Section 5 and system description in Section 6. Section
7 presents and discusses NIST Speaker Recognition Evaluation
(SRE) 2006 results of MLLR-based and other acoustic-level
systems. Conclusions are given in Section 8.

2. MAXIMUM LIKELIHOOD LINEAR
REGRESSION (MLLR)

Maximum-Likelihood Linear Regression (MLLR) [10] is an
acoustic adaptation technique typically used for speaker adaptation
purposes in HMM-based speech recognition systems. The idea be-
hind is to adapt the parameters of an HMM using an affine trans-
form given T speaker-dependent observation vectors, oT , so as to
maximize its log-likelihood with respect to the adapted model as

θ̂
∗ = arg max

θ̂

log p(oT |θ̂) (1)
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where θ̂∗ are the parameters of the adapted model,
μ̂s = Aμs + bs and Σ̂s = Σs, i.e. mean vector and co-
variance matrix, respectively, for a given state or tied-state s. In
this framework, mean adaptation is performed by means of an
affine transform while covariance matrices are not adapted.

A preliminary step to solve (1) is to align the observed
feature vectors against the model states. This is performed by
force-aligning the data against the transcripts, the words of which
can be decomposed into model-level states by means of the
pronounciation lexicon. The optimization process is typically
performed using the Expectation-Maximization algorithm [10],
although other approaches have also been proposed [11].

3. LATTICEMLLR
The MLLR approach, as described in Section 2, relies on the

transcripts for state alignment, which plays an important role
in chosing the models used for MLLR adaptation. However,
transcripts are subject to errors, specially in those tasks involving
spontaneous and low-quality speech. Word Error Rates (WER) for
these applications tend to be high, typically over 20%.

Errors in the transcripts can be accounted for by modeling the
uncertainty in the state alignment. In this sense, (1) can be restated
as the maximization of the expected conditional log-likelihood
given all possible alignments S, from observation sequence oT to
state sequence sT as

θ̂
∗ = arg max

θ̂

∑

sT ∈S

p(sT|oT , θ) log p(oT , sT|θ̂) (2)

where p(sT|oT , θ) is the probability of aligning the observation
sequence oT into state sequence sT using the non-adapted model,
θ. In standard MLLR, these probabilities are set to 1 for the chosen
alignment and 0 for all other paths, ignoring all paths except that
involving the 1-best hypothesis, which reduces (2) to (1). The
formulation in (2) also allows to include cross-word transition
probabilites in the MLLR estimation, thus using information
provided by the language model as well. Furthermore, since one
observation vector can be mapped to several states, more speech
data is used overall for estimating each transforms. Conversely,
more transforms can be used with the same amount of data per
transform.

Based on this framework, lattice-based MLLR [12, 13] uses
the word-lattice output of an ASR system obtained in a first-pass
decoding to estimate MLLR transforms. The word-level graph is
collapsed down to a model-level graph using the pronounciation
variants in the lexicon to eventually find all possible alignment
probabilities, p(sT|oT , θ). Thus, the transition probabilities are
specified by both left-to-right within-word models and the arcs
of the word lattice. The most likely alignments have a strong
effect on the likelihood function whereas the least likely align-
ments are given a smaller weight and can be eventually pruned
to reduce computation load. A threshold can also be set at the
Gaussian posterior probability level to filter out unlikely Gaussians.

4. MLLR FEATURE EXTRACTION
Following the approach presented in [4, 5], MLLR transforms

are estimated for each speaker of interest using an HMM-based
LVCSR system. Depending on the amount of speech data avail-
able for adaptation, the acoustic space can be split into several
acoustic classes, static or dynamically derived, which result in

several MLLR transforms. Using many classes results in a finely
represented phonetic space but less speech data is available for
each class-dependent transform. All MLLR matrix coefficients
are eventually re-arranged into vector form to make up a single
high-dimensional feature vector that characterizes the speaker we
have adapted for.

5. EXPERIMENTAL SETUP
We evaluated both MLLR and lattice MLLR techniques in the

NIST Speaker Recognition Evaluation 20061. SRE’06 consists of
conversational telephone speech data involving multiple languages,
dialects as well as multiple acoustic conditions. However, we tar-
geted the common condition, which involves English language tri-
als only, the main reason behind being that our LVCSR system is
developed for English. Data consists of 5-minute-long segments
with about two minutes of average effective speech per conversa-
tion side2. 816 (354 male / 462 female) speakers are available for
model training and 3735 (1606 male / 2129 female) are for test,
resulting in over 20000 cross-channel trials, with a proportion of
60 impostor speakers per true speaker. Mismatch in the acoustic
channel as well as in the dialect is allowed.

6. SYSTEMDESCRIPTION
The LVCSR system used for computation of MLLR transforms

is based on the LIMSI RT’04 LVCSR system [14]. This system
was trained using Speaker Adaptive Training (SAT) on about 650
hours of speech data, including Switchboard I (4862 conversation
sides), Switchboard II (2348 sides), Callhome (240 sides) and
Fisher (6127 sides) corpora. The front-end was optimized for
speaker recognition and it uses 15 PLP coefficients along with
its Δ, ΔΔ coefficients, Δ and ΔΔ energies, feature mapping
for channel compensation and feature warping. Acoustic models
are gender-independent tied-state context-dependent triphones.
Tied-states were found by means of a decision tree, resulting in
6100 tied-states with 32 Gaussians per state.

In the following, we present the rest of speaker recognition
systems involved in our experiments. All of these use the same
front-end used in the LVCSR system, except for segmentation.
MLLR-based systems used forced-alignment for segmentation
while other acoustic-based systems used a Speech Activity
Detector (SAD) that considered only voiced regions in the speech
signal.

MFCC-GMM system
The MFCC-GMM system is based on the GMM-UBM

paradigm with diagonal covariance matrices trained using 3
iterations of MAP adaptation. The GMM is gender-dependent
with 1536 Gaussians (512x3). For compensating inter-session
variability of GMMs supervectors, we use hybrid Factor Analysis
(FA) [15] where GMM are compensated at the model level
and test segments are compensated in the feature domain. The
channel-loading matrix was trained on the SRE’04 data and we
used 40 dimensions for the channel subspace. Speaker GMM are
compensated at the model level and test segments are compensated
in the feature domain. Scores are T-norm normalized using 500
speech segments (250 males and 250 females) taken from SRE’04
data as well. We use a forward-backward scoring approach,
where test speech is scored against the target model and target

1The NIST year 2006 speaker recognition evaluation plan, http://
www.nist.gov/speech/tests/spk/2006/

2The common condition involves two sides, or alternatively, four wires.

4538



speech is scored against the test model. Therefore, we obtain
2 scores per trial which are averaged to give one final score per trial.

SVM-based systems
All SVM-based systems use the same SVM set-up and pre-

processing, differring in the features used. For pre-processing,
we apply Nuisance Attribute Projection (NAP) to project out the
subspace of maximum intra-speaker variability, thus compensating
inter-session variability. We use the NIST SRE’04 dataset as NAP
training data. An affine transform maps each feature component
into the range [-1/

√
D,1/

√
D], D being the dimension of the

feature vector, so that only normalized dot products are processed
by the SVM.

We use SVMTorch3 with a linear kernel set-up for SVM
classification. The impostor speaker set consists of 2243 speech
segments from the NIST SRE04 training data plus 4854 speech
segments from the Switchboard I corpus. All of them are in
English language and have a minimum duration of 10 seconds
of speech (after forced-alignment). This configuration allows
all SVM-based systems to share the same impostor data, as
transcripts4 are available for all of the 7097 segments. We use
the forward-backward scoring approach as in the MFCC-GMM
system.

MFCC-SVM system
The MFCC-SVM system is based on the GLDS kernel[2], using

a third-order polynomial feature extraction scheme. The resulting
features were variance normalized and averaged over the whole
segment to obtain a single 20824-dimensional vector.

GSV-SVM system
The GSV-SVM system uses Gaussian mean supervectors of

a GMM as features. GMMs are adapted using MAP adaptation
from a gender-dependent UBM. We use 512 Gaussians and
variance-normalization.

MLLR-SVM systems
MLLR-SVM systems use either standard MLLR or lattice

MLLR transforms as features as described in Sections 2 and
3, respectively. We experimented with two to four MLLR
classes (non-speech/speech, non-speech/consonants/vowels and
non-speech/consonants/vowels1/vowels2). These classes were
manually derived based on phonological cues. MLLR tranforms
for the non-speech class were not used as they were assumed not
to carry any relevant speaker information. Thus, we obtained a
maximum of three transforms using four acoustic classes. NAP
set-up, feature normalization and modeling were kept the same as
in MFCC-SVM systems.

7. RESULTS
Our experiments were set to compare systems using different

MLLR approaches, i.e. lattice MLLR vs. standard MLLR. We
generated 1-best hypotheses and lattices using our LVCSR system.
Table 1 shows Detection Cost Function5 (DCF) for the a posteriori

3SVMTorch: a Support Vector Machine for Large-Scale Regres-
sion and Classification Problems - http://www.idiap.ch/learning/
SVMTorch.html

4Manual transcripts for Switchboard I, ASR transcripts for SRE’04.
5The NIST SRE 2006 campaign defines DCF as a weighted sum of false

alarm and miss errors which becomes PMiss + 9.9 × PF alseAlarm after
normalization.

optimal threshold, i.e. Minimum Detection Cost (MDC), and
Equal Error Rate (EER) results obtained for the common condition
in the SRE’06 evaluation for all systems. Matched-pairs statistical
significance tests6 were also performed for some pairs of systems
to check reliability of shown improvements.

Regarding MLLR-SVM systems (second block in Table 1), we
observe a trend to lower error rates as we use more transforms.
However, error rates increase again when using four acoustic
classes (MLLR-SVM 3t), possibly due to either the lack of data
for reliably estimating transforms or the choice of the static class
definitions (two subsets of vowels instead of only one). This trend
is also observed for systems using word-lattices (third block in
Table 1), but the performance loss using three transforms rather
exhibits a saturation effect. We believe such effect is due to
observation data sharing among several Gaussians when using
word-lattices. Improvement of Lat. MLLR-SVM 3t vs. Lat.
MLLR-SVM 2t fails to be significant, as shown in the last row of
Table 2. Systems using Lattice MLLR outperform standard MLLR
regardless of the number of transforms, although not significantly
when using three transforms (see Table 2. For systems using two
transforms, the performance increase is consistent for most of
the operating points and around the MDC region especially, as
shown in Fig. 1(a). Relative gains in MDC of 8% are found for
MLLR-SVM 1t vs. MLLR-SVM 2t, around 5% for MLLR-SVM
3t.

Overall, MLLR-SVM systems outperform all other acoustic-
level systems both for MDC and EER operating points, as
illustrated in Fig. 1(b). Standard MLLR and lattice MLLR
using two transforms obtain relative gains of 5% and 13% MDC
respectively when compared to MFCC-GMM, which is the best
performing amongst non-MLLR systems. In terms of EER, gains
of 3.5% to 4.5% in absolute terms are observed.

System MDC EER (%)
MFCC-GMM 0.0176 3.72
MFCC-SVM 0.0188 4.09
GSV-SVM 0.0183 3.67
MLLR-SVM 1t 0.0189 4.45
MLLR-SVM 2t 0.0166 3.63
MLLR-SVM 3t 0.0162 4.18
Lat. MLLR-SVM 1t 0.0174 4.23
Lat. MLLR-SVM 2t 0.0152 3.63
Lat. MLLR-SVM 3t 0.0153 3.68

Table 1: MDC and EER for the MLLR-SVM and other acous-
tic-level systems on the SRE’06 evaluation data (key v11). Lowest
DCF and EER in a series of results are shown in boldface.

8. CONCLUSIONS
Lattice MLLR was proposed as a means to deal with erroneous

transcripts in text-independent speaker recognition systems. Sys-
tems based on this approach exhibited consistent gains over sys-
tems based on standard MLLR in the NIST SRE06 evaluation. Us-
ing 4 acoustic classes, lattice MLLR helped mitigate performance

6Assuming systems A and BmadeM different binary decisions of which
N are correct for B, the probability that one system improved performance
with respect to the other by chance, i.e. at least N correct decisions be
randomly made, can be modeled by the cumulative Binomial distribution
2P (k ≥ N |M) = 2

∑
M

k=N

(
M

k

)
pk(1−p)M−k , where correct decisions

have a probability of p = 0.5.
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Figure 1: DET curves for MLLR individual systems (left, a): Lattice MLLR-SVM 2t vs. MLLR-SVM 2t. DET curves for other individual
systems (right, b): Lattice MLLR-SVM 2t, MLLR-SVM 2t, MFCC-GMM and GSV-SVM. MDC operating points are shown as dots.

From System To System P-Value
MLLR-SVM 1t Lat. MLLR-SVM 1t 0.002
MLLR-SVM 2t Lat. MLLR-SVM 2t 0.004
MLLR-SVM 3t Lat. MLLR-SVM 3t 0.077
Lat. MLLR-SVM 1t Lat. MLLR-SVM 2t 0.002
Lat. MLLR-SVM 2t Lat. MLLR-SVM 3t 0.87

Table 2: Significance levels for several system comparisons. Weak
significance is reached for p-values between 0.05 and 0.01 and no
significance for p-values above 0.05, both shown in boldface.

degradation due to the lack of data assigned to each transform.
Both MLLR-based approches outperformed all other acoustic-level
systems, including MFCC-GMM and GSV-SVM, currently consid-
ered as state-of-the-art.
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