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ABSTRACT 

 

This study proposes an approach to improving speaker recognition 

through the process of minute vocal tract length perturbation of 

training files, coupled with pitch normalization for both train and 

test data.  The notion of perturbation as a method for improving the 

robustness of training data for supervised classification is taken 

from the field of optical character recognition, where distorting 

characters within a certain range has shown strong improvements 

across disparate conditions.  This paper demonstrates that acoustic 

perturbation, in this case analysis, distortion, and resynthesis of 

vocal tract length for a given speaker, significantly improves 

speaker recognition when the resulting files are used to augment or 

replace the training data.  A pitch length normalization technique is 

also discussed, which is combined with perturbation to improve 

open-set speaker recognition from an EER of 20% to 6.7%.  

 

Index Terms—speaker recognition, speech synthesis 

 

1. INTRODUCTION 

 

Data perturbation and perturbed synthesis has been demonstrated 

to mitigate the effects of train and test data mismatch in the field of 

Optical Character Recognition (OCR).  In OCR, as in speech, it is 

often possible to obtain a large amount of high quality training 

samples for a given phenomena, but very difficult  to anticipate the 

effects of the real-world, sub-optimal conditions under which the 

system will be required to function.  Often, in both OCR and 

speech processing, training data of sufficient quantity and which 

adequately reflects natural distortion is simply not available.  This 

is especially true for speaker identification, where one may have 

only a single sample of a target's voice.  In OCR, the process of 

perturbation is applied to data that is too clean, too uniform, or too 

reflective of a particular set of conditions, such as a single typeface 

or a small set of handwriting samples.  Perturbation [1] [2] is 

applied to training samples to minutely distort the data such that 

the characters are still recognizable as themselves, but are less 

uniform, clear or clean. Perturbation may be applied directly to the 

training data or the training data may be synthesized with 

perturbation for digital data. The end result in OCR is a major 

improvement in the robustness, accuracy and generalizability of 

character models.  

 The current study applies the concept of perturbation to 

speaker recognition.  More specifically, we explore the automatic 

augmentation and enhancement of training data for a given set of 

speakers using vocal tract length perturbation within a 

predetermined range.  This paper also examines another acoustic 

data manipulation technique of pitch normalization. Both these 

phenomena are generated during resynthesis using a speech 

analysis, rescaling and synthesis system based loosely on concepts 

from speech manipulation systems such as the STRAIGHT 

algorithm [3].  The immediate goal of this approach is to counter 

the effects of session variability and the natural small shifts in 

vocal register that occur during conversation due to mood, speaker 

interaction factors, changes in the noise environment, etc.  

 

2. ACOUSTIC PERTURBATION APPROACH 

 

In the context of this paper acoustic perturbation will refer to the 

analysis and rescaling of vocal tract length (VTL), which will then 

be used to synthesize a new, slightly distorted, speech sample.  The 

tool used to perform this analysis and synthesis is a C-code suite of 

tools based on the ideas of the STRAIGHT algorithm.  An 

optimized C version of this tool was important  in order to render 

the required transformations in real-time, due to the complexity of 

the analysis and synthesis process. 

 Initial experiments were performed to determine the 

acceptable range of VTL rescaling, such that the new sample is 

different from the original, but is still a sample of the target 

speaker.  Speakers from the TIMIT corpus were rescaled on a 

range of values from 60% to 140% of their recognized VTL, where 

the percentage is relative to the speaker's VTL as determined by 

the analysis algorithm.  Each scaled set was then evaluated with a 

speaker ID system to determine the range where altering VTL 

results in rejection of target, and the range where said speaker is 

safely IDed as him/herself.  Based on these tests it was determined 

that scaling VTL beyond +/- 15% will safely create a novel 

speaker, and that rescaling within +/- 7% will generate the same 

target.   

 

3. PITCH NORMALIZATION APPROACH 
 

While pitch is largely a function of excitation (F0), changes in 

pitch do impact the nature of higher formants, with higher pitch 

rendering more widely spaced formants and lower pitch 
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compressing the formant space.  For lower sample rate recordings, 

female speakers with high F0 may not exhibit the F4 formant, or  

 
Chart 1: Impact of VTL and Pitch rescaling on speaker 
Recognition 

the F4 formant may be very exceedingly weak or absent in many 

vowels.  Studies have shown that both F3 and F4 are important to 

speaker recognition [4] and that strengthening the presence of 

higher formants can improve the robustness of cross-session 

speaker recognition [4].  Moreover, while vocal register 

differences tend to manifest themselves in F0, they also impact the 

shape of formants in the higher frequencies [5].  Even in normal 

conversation, F0 changes widely, with a typical range for males 

varying between 211 and 86 Hz , due to differences in interactive 

situation, lexical tone, and sentence type (interrogative vs 

declarative, etc. [6]  Research has shown that such changes in 

intonation impact speaker recognition [7].  Normalizing pitch is 

hypothesized to partially eliminate these distracting artifacts so that 

stable, speaker specific features may be more readily extracted.  

 

4. EXPERIMENTAL PROCEDURE 

 

Open set experiments were run on two corpora to determine the 

impact of perturbation and pitch normalization on speaker 

recognition.  The major hypotheses were 

 1) Does VTL-based acoustic perturbation have an impact on 

speaker models?  If so, what scalings are optimal? 

 2) Is it more effective to combine synthesized data with 

original data in the same model or by building separate models? 

 3) Does pitch normalization impact speaker recognition? For 

both training and test data? For which pitch ranges? 

 4) Can perturbation and pitch normalization be combined to 

further improve speaker recognition results? 

 

4.1 The Speaker Recognition System 

 

The Gaussian Mixture Model (GMM) and Universal 

Background Model (UBM) approach, developed by Reynolds [8], 

are also used in this study.  Front-end feature processing consists 

of mel-weighted and delta fft-cepstra generated from a frame size 

of 20ms with 50% overlap.  During recognition, the likelihood of 

the test speech is computed for each of the GMMs produced during 

training.  For the implementation used in this paper only 5 

mixtures are used for the calculation of the likelihood of a 

particular speaker’s GMM model.  The five mixtures are chosen 

from the most probable mixtures in the UBM.  The goal of this 

paper clearly does not lie in altering the speaker recognition 

system, or of comparing its accuracy to other algorithms, but rather 

in evaluating the impact of the two experimental conditions on 

how a speaker recognition system performs. 

 

4.2. Databases 

 

For the purposes of this study two corpora were chosen, with 

different channel and session characteristics.  For same-session 

tests the CSLU 22 Language Corpus, a monologue telephone 

database, was used.  Ninety speakers total were involved, all 

English speakers with 50 seconds of continuous  speech.  Thirty 

speakers were used as targets in each test run, with 60 as 

impostors.  Each training sample was 25 seconds of speech, as was 

each test sample.  For inter-session tests the Multi-Session Audio 

Research Corpus (MARP) [7] was used, as it contained speech data 

spanning 21 sessions over three years, and could thus be used to 

verify performance across sessions.  For these initial experiments 

only pitch normalization was run on the MARP data, since test and 

train consisted of single sentences (0.4-1.7 sec. in length) and 

effective VTL scaling could not be accomplished.  MARP tests 

were round-robined with 17 targets and 17 imposters. Experiments 

are continuing with the conversational portion of MARP. 

 

4.3 Experimental Parameters  

 

Acoustic perturbation  varied along three parameters: 1) the degree 

of scaling performed, 2) the composition of models in terms of 

combinations of different scalings, 3) whether a single model was 

created for each speaker or if multiple models were used.  Pitch 

normalization varied across two parameters: 1) the pitch to which 

speakers were scaled (62.5 Hz, 125 Hz, and 250 Hz) and 2) 

whether just training data was normalized, or if both train and test 

were normalized.  A final set of experiments combined both 

perturbation and pitch normalization. 

 

5. RESULTS 

 

Tests were run using the following configurations: 1) “Single 

Models” are created by combining all the training data into a single 

model for each speaker.  For example, both pitch normalized and 

original data would be combined to build a single model for a 

given speaker. 2) For the “Multi-Model” approach several different 

models are generated for each speaker, each representing a 

different synthesis condition, often along with a model for the 

original data. 

 

5.1 Perturbation 

 

 A “stacked” testing approach was used to produce 

perturbation results where only the original file was used to train a 

model to start, then the unaltered synthesized file was added to the 

model (100s, for “100% scaling”) and tested, followed by plus and 

minus 2% VTL files, 4% VTL files, and so on. The combination of 

synthesized files from 96-104% VTL produced the most effective 

model and reduced EER from 0.194 to 0.092, as seen in Table 1.   
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Table1: Results of Perturbation Parameters 
Training Data EER 

 Parameters Multi-Model Single Model 

Original only 0.194 0.194 

Original & 100s 0.158 0.192 

98-102s 0.129 0.138 

96-104s 0.100 0.092 

94-106s 0.100 0.125 

92-108s 0.100 0.142 

90-110s 0.087 0.133 

88-112s 0.100 0.167 

 
5.2 Pitch Normalization 

 
Experiments with pitch normalization included three F0 settings of 

62.5Hz, 125Hz, and 250Hz.  The three modeling approaches 

included the single model and multi model for both real and 

synthesized data and another single model approach for 

synthesized data only. Results indicate normalization to an F0 of 

125Hz to be most effective.  This setting affords a realistic pitch 

setting within the typical male range of 86-211 Hz and optimizes 

for 8k sampling rate audio.   

 

Table 2: Pitch Normalization Results -Test Pitch Not Normalized 
Train 

Pitch 

Model Type EER 

 Baseline 0.194 

Single-model 0.158 

Multi-model 0.158 

62.5Hz 

Synth only 0.213 

Single-model 0.133 

Multi-model 0.150 

125Hz 

Synth only 0.267 

Single-model 0.200 

Multi-model 0.196 

250Hz 

Synth only 0.329 

 
Moreover, viewing of the spectrogram shows a loss of formant 

structure at 62.5Hz and an information “undersampling” at 250Hz.  

Nevertheless, the 62.5 Hz F0 still provides improvements over 

non-normalized audio, though slightly less than the optimal 125Hz 

frequency. Table 2 shows an improvement in EER from the 

baseline of 0.194 to 0.133 with a single, composite model pitch 

normalized at 125 Hz.  With the test data normalized as well we 

see multi-model and pure synthesized data reaching an EER of 

0.133 (Table 3) and error rates for synthesized data dropping 

significantly in every category.  Table 4 gives results for the 

MARP cross session data, where greatest reduction in EER was 

obtained at 125 Hz using the synthesized data sets, with a 4.4% 

absolute reduction in EER. 

 

5.3 Combined Pitch Normalization and Perturbation 

 

Table 5 represents results where both pitch normalization and VTL 

scaling perturbation are applied to the training data files, with test 

files left unchanged. Only the 96-104 scaling was tested as it was 

the best performer in the perturbation-only set of tests.  

 
Table 3: Pitch Normalization Results -Test Pitch Normalized 

(CSLU) 

Train 

Pitch 

Model Type EER 

 Baseline 0.194 

Single-model 0.158 

Multi-model 0.200 

62.5Hz 

Synth only 0.150 

Single-model 0.167 

Multi-model 0.133 

125Hz 

Synth only 0.133 

Single-model 0.142 

Multi-model 0.200 

250Hz 

Synth only 0.233 

 
Table 4: Pitch Normalization Results -Test Pitch Normalized 

(MARP-Cross-Session) 

Train 

Pitch 

Model Type EER 

 Baseline 0.301 

Single-model 0.289 

Multi-model 0.341 

62.5Hz 

Synth only 0.297 

Single-model 0.262 

Multi-model 0.318 

125Hz 

Synth only 0.256 

Single-model 0.358 

Multi-model 0.398 

250Hz 

Synth only 0.370 

 

Table 5: Combined Perturbation and Pitch Normalization -Test 

Pitch Not Normalized (CSLU) 

Train 

Pitch 

Test 

Pitch 

Model 

Type 

Perturbation EER 

96-104s (pitch synth 

with real) 

0.100 Single 

Model 

96-104s synth only 0.204 

96-104s (real and 

synth) 

0.133 

62.5Hz Actual 

Multi-

model 

96-104s synth only 0.217 

96-104s (pitch synth 

with real) 

0.133 Single 

Model 

96-104s synth only 0.200 

96-104s (real and 

synth) 

0.129 

125Hz Actual 

Multi-

model 

96-104s synth only 0.196 

 
This combination with pitch normalization of train files only, 

provides error reduction to 0.100 EER, a level previously achieved 

with perturbation alone. 
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Table 6: Combined Perturbation and Pitch Normalization -Test 

Pitch Normalized 
Train 

Pitch 

Test 

Pitch 

Model 

Type 

Perturbations EER 

96-104s (pitch synth 

with real) 0.100 

Single 

Model 

96-104s synth only 0.096 

96-104s (real and 

synth) 0.100 

62.5Hz 62.5Hz 

Multi-

model 

96-104s synth only 0.096 

96-104s (pitch synth 

with real) 0.104 

Single 

Model 

96-104s synth only 0.096 

96-104s (real and 

synth) 0.067 

125Hz 125Hz 

Multi-

model 

96-104s synth only 0.067 

 
However, in the matched case (Table 6) when the test pitch is 

normalized to match the train, error rates are further reduced from 

a previous best of 0.092 to 0.067 EER.  Overall this combination 

produces a notable improvement from a baseline equal error rate of 

19.4% to 6.7% and demonstrates the utility of combining both 

perturbation and pitch normalization within SID systems. 

 

6. DISCUSSION/CONCLUSIONS 

 

To return to the four research questions posed in section 4, we find 

that VTL-based acoustic perturbation has a beneficial impact on 

the accuracy of speaker models, with a decrease in EER from 

0.194 to 0.092, with the scaling combination range of 96-104% 

VTL having the best effect. 

 Pitch normalization on its own did reduce EER as well, 

though not as much, with a drop from 0.194 to 0.133 on CSLU and 

a drop from 0.301 to 0.256 on the MARP data.  Matching pitch in 

test and train did not impact lowest EER in the pitch 

normalization-only experiments, but it did reduce the amount of 

error in tests overall and it had a significant impact in the 

combined pitch/perturbation tests. Best performance was achieved 

at a scaling of 125 Hz in almost all cases.  Results clearly show 

that combining pitch normalization and VTL perturbation 

decreases EER in these experiments, with combined performance 

reducing error from the baseline error of 0.194 to 0.067, and from 

the error rate of VTL perturbation alone at 0.092, down to to 0.067.  

 The notion that speaker data reflecting a wider range of vocal 

conditions would improve speaker recognition is intuitive and well 

supported by experimentation.  Of interest here is the use of 

automatically synthesized data, albeit transformed rather than 

generated, to improve speaker identification models.  The authors’ 

initial impression that synthesis was too crude to be of use in target 

identification was changed by studies showing that language 

identification (LID) performance could be improved by using 

STRAIGHT to generate novel speakers for augmentation of a LID 

model [9].  Furthermore, pilot experimentation showed that 

moderately vocoded data could augment speaker identification 

models for use on non-vocoded test data.  This demonstrated that 

while human intelligibility may suffer in the process of speech 

transformation, information useful to speaker identification is often 

maintained.  This is analogous to the loss of information in the use 

of RASTA filters, which can also serve to improve the 

generalizability of speaker recognition. 

 The impetus of this study came out of a realization that 

speaker voice changes even over the short term (within a single 

conversation) can dramatically impact speaker recognition, and 

that approaches to mitigating this effect are essential to combating 

the larger problem of inter-session variability.  Most research has 

focused on the accompanying interference that impacts speaker 

recognition across sessions, such as channel differences, noise, and 

digital distortion.  What has received much less attention has been 

the variation in the voice itself, and how the voice changes in 

reaction to noise, channel levels, distortion, environment, 

interlocutor, emotion, etc.  This paper presents one approach to 

data enhancement using the voice characteristics of pitch and vocal 

tract length to provide a way of expanding the recognition power 

of a model built with a small sample of audio to greatly reduce 

error rates.  
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