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ABSTRACT

We describe a new GMM-UBM speaker recognition system that uses
standard cepstral features, but selects different frames of speech for
different subsystems. Subsystems, or “constraints”, are based on
syllable-level information and combined at the score level. Results
on both the NIST 2006 and 2008 test data sets for the English tele-
phone train and test condition reveal that a set of eight constraints
performs extremely well, resulting in better performance than other
commonly-used cepstral models. Given the still largely-unexplored
world of possible constraints and combinations, it is likely that the
approach can be even further improved.

Index Terms— Speaker recognition, higher-level features, GMMs,
cepstral features, MFCCs, syllables

1. INTRODUCTION

A standard approach in automatic speaker identification models a
speaker by spectral short time information using a Gaussian mixture
model (GMM) [1] and Mel frequency cepstral coefficients (MFCCs)
as features. The framework uses a universal background model (UBM)
that is adapted by maximum a posteriori (MAP) adaptation to speaker-
specific spectral features [2]. In this approach, all frames of speech
(above some energy threshold) are considered together.

Several previous studies have investigated the use of word or
phone information to condition the extraction of cepstral features,
thereby reducing variability associated with phonetic content. For
example, the approach in [3] conditions a cepstral GMM on the iden-
tities of frequent words. A variant conditions on syllables rather than
words [4]. Reviews of a range of other studies that condition cepstral
feature extraction regions on linguistic information are provided in
[5] and [6]. In general such approaches can combine well with a
standard cepstral system (i.e., one that uses all frames of speech),
but have not outperformed standard systems on their own.

In the current paper we describe a new system based on vari-
ous syllable-level constraints that to our knowledge have not been
explored in previous work. Another novel aspect of the system is
simply that it performs extremely well. The system was included as
part of SRI’s submission to the NIST speaker recognition evaluation
(SRE) 2008. It has been run only for English data so far, and consists
of eight GMM-UBM systems, each of which includes only frames
from regions in the speech that match a particular “constraint”. Note
that these are not separate subsystems in the terms of cepstral fea-
tures. Rather, all subsystems share exactly the same set of MFCC
features, as shown in Figure 1. Our main intention was not to find
the constraint system with the best performance but to investigate
if reusing frames in different subsystems (i.e., in different contexts)
adds new or complementary information to a combined system. The
eight subsystems are combined by linear logistic regression (LLR)

[7]. The resulting system outperforms SRI’s otherwise top current
cepstral-based systems on English telephone data, for both the NIST
SRE 2006 and NIST SRE 2008 test data sets.

Fig. 1. Schematic depiction of the constrained GMM-UBM ap-
proach. Subsystems (“constraint systems”) share the same cepstral
features, but contain speech frames selected from different regions
of the speech. Regions are based on syllable-level information.

The remainder of the paper is organized as follows. Section 2
describes the datasets for development and evaluation. Section 3
discusses the eight selected constraints, including their motivation
and extraction. Section 4 describes the evaluation systems and their
combination. In Section 5 we show the results of each subsystem on
two standard speaker evaluation datasets (SRE 2006 and SRE 2008)
and their combination. The paper concludes with a summary and
proposed future research.

2. DATASETS

All datasets were provided by NIST and collected as part of the
Mixer effort. Nontelephone data was preprocessed with the ICSI/
Qualcomm Aurora Wiener Filter implementation [8]. Because the
constraints used rely on word recognition (currently), and are thus
language dependent, we used only the English subsets of the de-
scribed datasets.

2.1. Development Sets

We used different datasets for system development. For background
model training we used a subset (229 speakers) of the SRE 2004
English telephone data. For T-norm we used the same dataset. For
intersession variability (ISV) compensation training, speakers from
SRE 2004 were used. We used only those speakers for whom at
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least eight different recordings were available. In addition, we used
alternate microphone (altmic) data from SRE 2005. For training the
logistic regression combiner we used SRE 2005 1-conversational
(1conv) telephone-telephone (tel-tel) trials. The development was
performed on SRE 2006 1conv tel-tel data [9]. The dataset contains
recordings of one conversation per speaker. The speech duration is
about 2.5 minutes per speaker for training and testing.

2.2. Evaluation Set

The system was evaluated on the test data for the 2008 NIST eval-
uation [10]. The SRE 2008 test data comprises a number of differ-
ent conditions. In this paper we focus on the “short2-short3” and
“8conv-short3” conditions. Short2-short3, i.e., training on short2
and testing on short3, was the required condition in the evaluation;
we optimized our system for this condition. We also include re-
sults for the 8conv-short3 condition, which was optional but is useful
for assessing the effect of increased training data on system perfor-
mance. The training set (short2) and the test set (short3) contain one
two-channel telephone recording per speaker. The 8conv training
condition contains eight two-channel telephone conversations and
no interview data.

3. CONSTRAINTS

A large set of candidate constraints was generated using informa-
tion such as phone or phone class identity, syllable position (onset,
nucleus, coda), combinations of these factors (e.g., voiced stops in
onset position only; consonant clusters in coda position; presence
of phone or class within a syllable), syllable structure (e.g., open
syllables), adjacent pauses, number of syllables in each word and
stress pattern in context of syllable. The number of Gaussians to
use for each constraint had to be explored empirically, since con-
straints vary in number of selected frames as well as in the result-
ing homogeneity of selected frames. Well-performing constraints
within a class of constraint types were retained. An ad hoc (but ulti-
mately successful) approach was taken to choose a smaller set out of
this set of about 100 candidates. The approach was a quasi-forward
search, starting with a “syllable-nucleus” constraint. Note that no
intersession-variability compensation (see below) was performed at
this point on the individual constraints, for practical reasons, so the
forward search performed is potentially suboptimal.

This approach does not select the best individual constraints.
For example, a highly successful individual constraint selects frames
only in syllables preceding a pause. Interestingly, this constraint
does about as well as a full baseline system, while using only about
one-sixth of the number of frames. However, once a “syllable-nucleus”
constraint is present, a “post-pausal syllable” constraint is more use-
ful to include in combination.

Our final set of eight constraints included the following, orga-
nized by type of constraint:

• (1) syllable onsets (31 %)

• (2) syllable nucleii (43 %)

• (3) syllable codas (22 %)

• (4) syllables following pauses (19 %)

• (5) one-syllable words (64 %)

• (6) syllables containing [N] (19 %)

• (7) syllables containing [T] (19 %)

• (8) syllables containing [B], [P], [V], or [F] (20 %)

The percentage value of frames in respect to an “all frames”
system is given in brackets. An “all frames” system uses 3.1 Mio
frames for UBM training.

We intentionally did not include a baseline or “all frames” sys-
tem in the combination, as our end goal was a combination with
SRI’s set of other systems that includes such baseline systems. It
is interesting to note that post-evaluation experiments showed we
could reduce the set of constraints to five, without a significant loss
in performance. Clearly, however, more research is needed in order
to better understand the behavior of the constraints both alone and in
combination.

4. SYSTEM DESCRIPTION

4.1. ASR System

The (ASR) is a fast and simplified version of SRI’s conversational
telephone speech recognition system, limited to two decoding and
various rescoring passes [11, 12].

The word error rate (WER) of native and nonnative speakers
on transcribed parts of the Mixer corpus was 23.0 % and 36.1 %,
respectively. On SRE 2006 altmic we measured a WER of 28.8 %.

4.2. Acoustic Modeling

As acoustic features we use MFCCs consisting of a 300-3300 Hz
front end with 24 Mel filters. Thirteen coefficients were computed
(C0-C12) with cepstral mean subtraction. Based on these 13 values
the first, second and third order derivatives are calculated, resulting
in a 52-dimensional feature vector. This feature vector is mean and
variance normalized over the conversation side.

The features are used to model the speakers/impostors by GMMs.
The dimension is different for each constraint (see Section 4.3). We
used the eigenchannel MAP framework [13] for ISV compensation.
The idea is to model a speaker by three different components: a
speaker- and session-independent component, a speaker-dependent
and a session-dependent component. A concatenation of the mean
vectors of one GMM defines a so-called GMM supervector.

The rank of the eigenchannel matrix was set to 50; the number
of iterations was 5. For matrix training a dataset with different ses-
sions for each speaker is needed. For each constraint system we per-
formed a ZT-NORM, i.e., a Z-NORM followed by a T-NORM [14].
Z-NORM was trained on 904 SRE 2004 speakers and T-NORM was
trained on 229 speakers.

4.3. Constrained GMM Systems

For each of the eight constraints defined in Section 3 we created a
different GMM-UBM subsystem based on the relevant frames. First
we created a UBM for each constrained subsystem. This UBM was
used to train the eigenchannel matrix. The target GMMs were then
created by eigenchannel MAP adaptation to the specific constrained
feature frames. The number of Gaussians was estimated heuristi-
cally on the SRE 2006 dataset. For the constraints that use syllables
after pauses and syllables containing the phone [T], we used 1024
Gaussian densities. 512 were used for all the other constraints. The
scores of each subsystem were combined by linear logistic regres-
sion (see Section 4.4).

4.4. Combination

We combined constraints at the score level using linear logistic re-
gression [7]. While there are other options for combination, an ad-

4526



vantage of the score-level combination at this early phase in un-
derstanding combinations of constraints is rapid turnaround when
adding or removing constraints. The constrained system was used in
combination with the other SRI systems for the NIST SRE 2008 sub-
mission. To perform a fair combination of these systems, we did not
use auxiliary information as described in [15] for the combination of
the constrained subsystems.

5. RESULTS

The short2-short3 condition of SRE2008 can be split into seven dif-
ferent English-only subconditions [10]. Because constraints were
developed on 1-side telephone recordings, we describe the results
on these conditions in detail (Section 5.2). In this section we also
present the results of the 8conv-short3 condition and the combina-
tion results for both conditions. The combination results are com-
pared to our baseline system, which is a single GMM-UBM that
uses all frames. The features and training data are identical to the
constrained system. Here, we compare the results of the constrained
system and of a GMM baseline on the other conditions.

5.1. Tuning

We conducted tuning experiments using SRE 2006 1conv telephone-
telephone condition data. The parameters we adjusted were the num-
ber of Gaussians for each subsystem, the number of expectation-
maximization (EM) iterations and the method and data for training
the eigenchannel matrix U . The number of EM iterations was of
minor impact for the results, so we set that to 5.

The training of the U matrix was performed with different data
and different ways of training. We also altered the rank of the ma-
trix, i.e., the number of eigenchannels. The first set of experiments
addressed the rank of the matrix. We obtained best results with a
rank of 50. We tried different datasets: SRE 2004 with telephone
training data with and without adding SRE 2005 alternate micro-
phone data. A training of two matrices (one for telephone and one
for alternate microphone ) with a rank of 25 followed by a concate-
nation of these matrices gave slightly better results than training one
matrix with a rank of 50 and pooling all the data together. Chang-
ing the weights of these two matrices by using different ranks did
not result in better performance. The combination of the two matri-
ces degraded the performance of the telephone-telephone results but
gave a large improvement for alternate microphone and mismatched
data, i.e., training and testing data from a different domain. For the
training of the U matrix the number of EM iterations was also of
minor impact. We decided to use five iterations. Table 1 shows the
combination results on the development set in the first column. The
combiner was trained on SRE2005. For comparison to state-of-the-
art systems that also use cepstral features, the table also shows results
for SRI’s other top systems in the 2008 NIST SRE submission.

system SRE 2006 SRE 2008
EER DCF EER DCF

Constrained Cep 1.30 0.075 2.77 0.134

GMM Cep 1.90 0.095 2.91 0.140

SV-PLP 1.79 0.074 3.42 0.142

SV-MFCC 1.84 0.089 3.68 0.143

SV-MLLR 2.38 0.108 4.15 0.189

Table 1. EER and DCF results for the five best-performing systems
in SRI’s NIST SRE 2008 submission

5.2. Telephone Results for Individual Constraints and Combi-
nation

Telephone condition results for the individual systems are shown in
Table 2. The table shows the results on SRE 2008 for both English
and native English speakers. The cuts to determine the native talkers
were provided by NIST. Using only one-syllable words achieved the
best stand-alone performance: An equal error rate (EER) of 4.40 %
for Tel-Tel and 4.48 % for the native English condition. These two
systems use far fewer frames than a baseline GMM with the same pa-
rameter setting, but achieve comparable results. They are followed
by two constraints that use syllable subregions, i.e., nucleus and on-
set. As shown, the combination of all eight constraints achieves a
large win for both conditions. A baseline system (i.e., a GMM-
UBM with exactly the same parameter settings) the constraint sys-
tems achieves an EER of 3.91 % on native English data and 3.95 %
on all English data. This is a relative improvement of the constraint
system of 33 % on native English data and 30 % on all English data.
Both values are significant with p < 0.001.

Table 1 shows results for the top SRI systems in the NIST SRE
2008 English telephone-telephone conditions for SRE 2006 and 2008.
The first row shows the results of the constrained system, GMM Cep
denotes a baseline GMM-UBM system, SV-PLP and SV-MFCC de-
note suportvector systems with GMM supervectors and either PLP or
MFCC features and SV-MLLR denotes a suportvector with MLLR
transforms as input vectors. A detailed explanation of all systems is
given in [12].

Because the constrained system was developed only a short time
before the evaluation, it was not possible to submit results for the
8conv-short3 condition in time for the evaluation deadline. But we
evaluated this condition after the evaluation, and found even more
impressive performance, i.e., an EER of 0.66 % and a DCF of 0.04.
The EER is even better than SRI’s submission for this condition. The
relative improvement is 24 % at a significance level of p < 0.1.

5.3. Combination Results for Other Conditions

Table 3 shows the results of the nontelephone and mismatched con-
ditions. The results are worse than the telephone-telephone results.
We believe that this is due to several reasons. The constrained sys-
tem is based on an ASR system, which is trained on telephone data
only. Because of that, the subsystem did not perform very well on
this condition. The EERs of the single systems are very high in case
of interview-interview with different microphones. The problem of
lack of interview data in ASR training is exacerbated by the problem
of not having interview data in UBM training for the subsystems.
For the interview-interview condition with the same microphone we
achieved an EER of 3.77 % and a DCF of 0.08. The interview-
interview condition with altmic is much worse than the same mi-
crophone condition, most likely reflecting the lack of different mi-
crophone training data for the ISV compensation. The interview-
telephone condition appears similar to that of the interview-interview
with different microphones, but the results are slightly better in the
former. This can likely be attributed to the use of telephone data in
the test condition.

6. SUMMARY AND CONCLUSION

We have described an approach that uses syllable-level constraints
to restrict the frames in an otherwise-standard cepstral GMM-UBM
system. Although clearly there are many other constraints to ex-
plore, we found a set of eight simple constraints that when com-
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# of syllable post 1-syll syllables with Combination
Test trials onset nucleus coda pause words [N] [T] [B,P,V,F] EER (%) DCF (x10)

short2-short3

Tel-Tel 17761 5.70 4.48 8.07 8.80 4.40 10.99 9.53 12.05 2.77 0.13
Tel-Tel (nat) 8489 5.76 4.77 8.39 9.38 4.28 11.19 9.38 11.68 2.63 0.12

8conv-short3

Tel-Tel 7408 1.97 1.09 1.97 4.17 1.32 3.95 5.26 2.63 0.66 0.04

Tel-Tel (nat) 3993 2.26 1.88 2.26 4.53 1.51 4.15 5.28 3.02 1.13 0.05

Table 2. EER results of individual constrained subsystems on SRE 2008 short2-short3 and 8conv-short3 telephone conditions

Constraint Baseline
Evaluation # of System GMM-UBM
Condition Trials EER DCF EER DCF

Int-Int 34181 12.87 0.53 17.18 0.66
Int-Int (same mic) 1727 3.77 0.08 2.57 0.145
Int-Int (diff mic) 32454 13.18 0.55 17.91 0.68

Int-Tel 10719 9.58 0.36 15.80 0.71
Tel-Alt 8442 7.33 0.25 7.74 0.35

Table 3. EER and DCF results for constrained and baseline system
on SRE 2008 short2-short3 non-telephone conditions

bined at the score level yield state-of-the-art performance on NIST
SRE 2006 and SRE 2008 evaluation data. The constrained system
furthermore provides significant complementary information when
combined with a baseline or “all frames” system. In addition, the
constrained approach appears to show strikingly good performance
for the NIST 8side training condition. In future work, we plan to
investigate further constraints and their combination, as well as the
question of optimal combination. For example, one could combine
feature vectors from different constraints into a single supervector
system. A final goal is to port the currently language-dependent ap-
proach to a more language-independent paradigm based on phone
recognition.
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