GLOTTAL CLOSURE INSTANT DETECTION USING LINES OF MAXIMUM AMPLITUDES
(LOMA) OF THE WAVELET TRANSFORM

Nicolas Sturmel, Christophe d’Alessandro, Francois Rigaud

LIMSI/CNRS
BP 133,91405 ORSAY CEDEX
FRANCE

ABSTRACT

The Lines Of Maximum Amplitude (LOMA) of the wavelet
transform are used for glottal closure instant detection. Fol-
lowing Kadambe & al. (1992), the wavelet transform modu-
lus maxima can be used for singularity detection. The LOMA
method extends this idea. All the lines chaining maxima of
a wavelet transform across scales are built. Then a back-
tracking procedure allows for selection of the optimal line for
each pitch period, the top of which indicates the GCI. The
LOMA method is then evaluated by comparing its results to
the DYPSA (Naylor & al.) algorithm, with the option of using
inverse filtering as preprocessing. The LOMA method com-
pares favorably to DYPSA, particularly on accuracy. One of
the advantage of the LOMA method is its ability to deal with
variations in the glottal source parameters.

Index Terms— Wavelet, GCI, EGG, Pitch Marks

1. INTRODUCTION

Many speech processing applications require the knowledge
of Glottal Closure instants (GCI): pitch synchronous analysis,
overlap-add speech synthesis, time and frequency scaling and
so on. Several types of methods have been proposed so far for
GCI detection. These methods are based on different aspects
of the GCI.

A first idea is to find directly the GCI using inverse filter-
ing based on linear prediction (LPC): the LPC residual shows
large peaks at GCI. However, Ananthapadmanabha & al. [1]
showed that one could find significant differences between the
GCI and the peaks in the LPC residual. Consequently, these
authors proposed a method based on the spectral phase. In
the speech production model, the speech signal is assumed
to be minimum phase. Then the linear phase component ob-
served in the speech spectrum reflects the delay between the
GCI and the analysis window. Zero-crossing of the average
phase slope are a good indication of the GCI (Smits & al.
[2]). This method is refined and carefully assessed in the work
by Naylor & al. [3] (the DYPSA method). This method in-
cludes a fair amount of post-processing, and leads to excel-
lent results. Another LPC based method has been proposed
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by Moulines & al. [4] : short-term covariance LPC is used
to compute changes in the statistical properties of the wave,
corresponding to GCI. This method has not been thoroughly
assessed, and it is known that covariance analysis lacks ro-
bustness. Some differences in the position of GCI are also
noticeable in the method based on the maximum likelihood
estimation of pitch period, proposed by Cheng et al. [5]

Soft Glottal Closure

Hard Glottal Closure

b= AAAA o = AAAN
PAY 2 PAY 2
YaNIay

S
Y

i

118 120 122 124 126 128
t (ms) t(ms)

Fig. 1. Hard glottal closure (left) and soft glottal closure (right)
wavelet analysis (positive part) and signal. Soft glottal closure lack
of high frequency information, whereas hard glottal closure is lo-
cated by the highest frequency scale and not the lowest.

As the CGIs are associated to singularities in the voice
source signal, the theory developed by Mallat [6] for singu-
larity detection has also been tried. The wavelet transform
modulus maxima has been applied by Kadambe & Boudreaux
Bartels [7], who used a dyadic wavelet transform for pitch es-
timation. First, the wavelet transform is computed on the 2 or
3 smallest scales (high frequencies). Then GCI are detected
by local modulus maxima above a given threshold across two
dyadic scales. This method works well when the speech sig-
nal contains sharp singularities at glottal closure, which is not
always the case for voiced speech. For instance, a voiced on-
set often presents a quasi sinusoidal waveform, without sharp
closure. Examples of sharp and soft glottal closures are given
in figure 1. In the situation of quasi-sinusoidal voice, the
method based on sharp variation of the speech signal at glottal
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Fig. 2. Top: illustration of the tree shapes visible on a wavelet de-
composition, maxima leading to the GCI are marked in red. Only
positive parts of the filter responses are given. Bottom: actual
wavelet decomposition used in the algorithm, and the lines con-
structed by following the maxima.

closure does not work. Another method using an inter-scale
maxima product has been proposed by Bouzid et al. [8]. As
the product maximum depends much on the harmonics rela-
tive amplitudes and phases, the low frequency component can
change significantly the estimated GCI locations. We believe
that the GCI corresponds to the line of maximum amplitude
and not only to the amplitude products. Depending on phases
all the maxima are not time aligned (see figure 3 right panel),
although the product ideally assumes that all the maxima are
occurring at the same instant.

Building on the wavelet modulus maxima theory, a new
algorithm for GCI detection with the help of the wavelet trans-
form has been presented [9]. Contrary to Kadambe & al.’s
work, all the scales are used for analysis. Then, the high fre-
quency features observed in abrupt closures as well the low-
frequency features of quasi-sinusoidal speech can be analyzed
with accuracy. A dynamic programming algorithm builds the
lines of maximum amplitude (LOMA), which are chaining
amplitude maxima across scales in the wavelets transform
domain. GCI are then derived by selecting the optimal line
within a pitch period.

In this paper we present an improved scheme for GCI de-
tection using LOMA. Contrary to [9] the improved algorithm
builds all the LOMA, starting from all the amplitude maxima
observed at a given small scale, and then uses a backtrack-
ing algorithm for selection of the optimal LOMA within a
pitch period (section 2). In a second part of the paper, a com-
parative evaluation of LOMA, DYPSA and an electroglotto-
graphic (EGQG) reference is reported (section 3) and discussed
(section 4). Section 5 concludes.
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Fig. 3. Algorithm for LOMA glottal closure instant detection

2. LOMA ALGORITHM FOR GCI DETECTION

The algorithm is presented in figure 3.

1. Compute a dyadic (octave-band) wavelet transform, us-
ing 8 scales (or bands) between 62 Hz and 8000 Hz.
Due to the dominant negative peak in the speech sig-
nal, the wavelet is chosen to have a negative maxima
so that only positive maxima of each scale are kept for
LOMA detection. Output of the wavelet filter bank are
displayed on Figure 1

2. Select the smallest scale (usually the 4 kHz band) with
significant maxima. Detect all the maxima at this scale.
Maxima are defined as the local maxima between two
Zero crossings.

3. For each maximum previously detected, find the opti-
mal line starting from this maximum, and descending
the scales down to the lowest frequency scale. Max-
ima are chained across scales: for each maximum at a
given scale 4, the closest maximum at the scale ¢ — 1 is
selected and cumulated amplitude for the line is com-
puted. Maxima are chained down to the lowest scale
forming the so-called branches on figure 3.

4. Using prior information on the average pitch, the band
containing the fundamental is determined. No fine
pitch detection is required, the aim being only to find
the lowest analysis band. Then the optimal LOMA for
each pitch period (maximum in the lowest band, called
the tree root in figure 3) is selected.

5. The GCI is detected using backtracking on the optimal
LOMA, as the time position of the highest scale maxi-
mum of the highest energy LOMA for each pitch period
tree. This process is illustrated in figure 2.

6. Post-processing. Most of the errors observed are
LOMA in excess, i.e. situations where two LOMA
are detected for the same pitch period. Two criteria are
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applied for sorting out this type of errors: a period-to-
period change in pitch of more than 30%, or a change
in accumulated amplitude of more than 50% between
two LOMA.

3. EVALUATION AND COMPARISON WITH DYPSA

The GCI detected with LOMA and DYPSA are compared to
the GCI extracted from the EGG derivative. The chosen com-
parison criterion is the time delay between an EGG-CGI and
the closest LOMA-GCI or DYPSA-GCI. These delays are ex-
pressed in ps. Two other measures are the rate of false alarms
and the rate of missing GCI. Prior to comparison, the EGG
and acoustic signals are aligned in order to compensate for
acoustic propagation delay between the glottis and the mi-
crophone. An additional test condition combines LOMA and
LPC inverse filtering: the speech signal is inverse filtered us-
ing LPC [10], with the idea of removing the effects of the
vocal tract and glottal pulse phase, before LOMA analysis.
Two corpora are used for evaluation:

1. a synthetic speech corpus containing 6 vowels and
various glottal parameter settings. This corpus is de-
signed to point out the strengths and weaknesses of the
method.

2. a natural speech database, containing 20 sentences
of read French, with simultaneous acoustic and EGG
recordings (male voice: 9 sentences, female voice: 11
sentences). This corpus has a total duration of approxi-
mately 2 minutes and 50 seconds, sampled at 16 bits/16
kHz.

3.1. Results on synthetic signals

Two sets of signals are synthesized, consisting of a glottal
(LF model) signal filtered through a vocal tract filter obtained
from LPC analysis on real speech (sampling frequency: 16
kHz). The first set contains gliding vowels (/a/, /i/ and /u/),
with pitch from 50 to 400 Hz and fixed glottal settings con-
ditions (open quotient O, = 0.6 and return phase quotient
Q. = 0.05).

Table 1. Results on synthetic signals, percentage of detection
within 0.25 ms around the actual GCI
set | vowel || dypsa | LOMA LPC | LOMA
1 \a\ 100% 97% 97%
\2\ 100% 87% 86%
\u\ 100% 97% 97%
2 \a\ 78% 86% 93%
\7\ 94% 76% 80%
\u\ 82% 94% 94%
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Fig. 4. Histogram distribution results (100xs intervals) of the anal-
ysis of the real speech corpus. Number of GCI detected sorted by
delay from EGG-GCI

The second set contains constant pitch vowels (/a/, /i/ and
M/, 120Hz), and varying glottal conditions from soft (O, =
0.6 and QQ, = 0.3) to hard (O, = 0.1 and @, = 0.05) glottal
closure.

For this test, the quality measure is the percentage of de-
tected GCI within 250us around the actual synthetic GCIL.
Those percentages are presented in table 1 for the three tested
methods.

Note that for the vowel /i/ the LOMA method performs
inferiorly than DYPSA. A possible explanation is that the
LOMA method always finds a local minimum on the signal.
In some situations the GCI does not correspond to a signal
minimum.

3.2. Spontaneous speech results

This corpus is composed of 20 sentences read from French
newspapers, for a grand total of 18949 GCI detected via EGG.
The results are displayed in figure 4. Each panel presents
the delay between the GCI detected by a given method, and
the GCI detected using EGG. Ideally, the results should be
an impulse at delay 0 (meaning that all the GCI are detected
with 0 delay). These distributions are characterized mainly
by their dispersions, measured by their standard deviations.
The top panels show the global results, the middle panel the
male speaker results, and the bottom panel the female speaker
results.



The standard deviation of the whole corpus is very simi-
lar for DYPSA and LPC-LOMA (about 640us). LOMA per-
formed about 10 % better with a standard deviation of about
580us. Results also vary with the gender of the speaker, as
indicated in figure 4, with standard deviations varying from
550 to 660.s. The false alarm rates are 4.1% DYPSA, 7.35%
LPC-LOMA and 6.55% for LOMA. The miss rates are 7.8%
DYPSA, 7.6% LPC-LOMA and 6.37% for LOMA.

4. DISCUSSION

It seems that LPC brings no improvement in GCI detection
using LOMA. It is known that LPC performs poorly for esti-
mation of the first formant, because of its interaction with the
glottal pulse spectrum maxima (the glottal formant). There-
fore, LPC does not help in correcting the phase alignment at
those frequencies. This phase shift, especially between the
second and third harmonics, seems to be the main cause of
GCI misdetection by LOMA. However, our results show that
LPC preprocessing brings more problems than it solves, em-
phasizing noise and phase distortion.

The tested methods give comparable results on both
synthetic and real speech signals. DYPSA performed per-
fectly on gliding vowels, whereas LOMA makes some errors,
mainly octave errors, when pitch crosses two analysis scales.
On the contrary, for varying glottal settings, LOMA performs
better than DYPSA, because it is better fit to low vocal effort
(quasi-sinusoidal voices).

The same general tendencies are also observed for natural
speech results. The different methods are giving the same
distribution standard deviation. It must be pointed out that
the highest peak around (0ps) are obtained for the LOMA,
with a more concentrated distribution. However, even if the
LOMA seems slightly more accurate than DYPSA, it seems
also less reliable regarding false detections.

5. CONCLUSION

A time-scale framework for analysis of glottal closure instants
is proposed and evaluated. The analysis is based on a dyadic
real wavelet transform. It is shown that the glottal signal gives
birth to lines of maximum amplitude in the time-scale do-
main. GCI are found at the top of LOMA for each voicing
period.

LOMA is compared to DYPSA, a state-of-the-art method
for GCI detection. The results are very similar, showing that
LOMA is a good candidate method for GCI detection. Analy-
sis of the results for test signals indicates that LOMA is more
robust than DYPSA against voice quality variation (open quo-
tient, vocal effort), particularly for low vocal effort. On the
contrary, LOMA seems less robust against large pitch varia-
tions. Provided that pitch information is given to the algo-
rithm, one can expect a robust detection of glottal closure in-
stants.
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In addition to GCI detection, LOMA could also be ex-
ploited for other purposes in voice source analysis. The cu-
mulated amplitudes along a LOMA seems a good indication
of voicing : it could be used to compute the degree of voic-
ing. Using a voice source model, open quotient, glottal pulse
asymmetry and loudness can be linked to the LOMA proper-
ties. Finally, as the wavelet analysis procedure can be consid-
ered as a linear filter bank, it would also be possible to use a
similar framework for implementing various speech modifica-
tion schemes. All these interesting perspectives are currently
under study.
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