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ABSTRACT

Modulation filtering is a technique for filtering slowly-varying en-
velopes of frequency subbands of a nonstationary signal, ideally
without affecting the signal’s phase and fine-structure. Coherent
modulation filtering is a promising subtype of such techniques where
subband envelopes are determined through demodulation of the sub-
band signal with a coherently detected subband carrier. In this paper
we demonstrate how modulation filtering, when done coherently, is
far more effective than standard incoherent methods. We show that
empirical results can be made to be almost ideal, and significantly
better than previous coherent attempts, as long as fine-structure in-
formation is retained as side information and the filterbank reduces
subband interference.

Index Terms— modulation, time-varying filters, acoustic signal
processing, speech processing

1. INTRODUCTION

Modulation filtering is potentially a useful type of filtering for many
natural and machine-made signals because such signals can often
be represented by low frequency modulators which modulate higher
frequency carriers. The so-called “modulation frequency” concept
is also useful for describing and representing broadband acoustic
signals. Modulation frequency representations, commonly referred
to as modulation spectrograms, usually consist of a transform of
a one-dimensional broadband signal into a two-dimensional joint-
frequency representation, where one dimension is standard Fourier
frequency and the other dimension is modulation frequency. Mod-
ulation analysis and modulation filtering techniques have been used
in a wide range of applications, e.g. in music source separation [1],
audio encoding and audio compression [2], and extensively in per-
ceptual speech research (e.g. [3, 4]).

Two critical components of modulation filtering techniques are
1) the separation of the broadband signal into frequency subbands
and 2) the subsequent separation of each subband signal into its
slowly-varying envelope signal and fine-structure carrier signal.
Thus the joint-frequency representation arises from an implicit sum-
of-products signal model. For modulation filtering, considerable
attention has focused on distortion effects caused by the subband
product model, starting with the work of Ghitza [5] and later ad-
dressed with a partial solution by Schimmel and Atlas [6] using a
form of coherent demodulation. However, [6] did not address the
full sum-of-products model, including both the “sum” and “prod-
uct” parts, which [5] touched upon within the context of overlapping
cochlear filters.
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In this paper, we show that modulation filtering, when done co-
herently, can perform considerably better than previously demon-
strated in [6]. We achieve nearly ideal results with the use of band-
width and recovery constraints derived in [7], as well as a careful
filterbank design that isolates adjacent subbands. These two devel-
opments lead to new qualifications on the overall sum-of-products
signal model for effective coherent modulation filtering.

2. MODULATION FILTERING BACKGROUND

For a real-valued signal x[n] we assume the following sum-of-
products signal model

x[n] =

K−1∑
k=0

sk[n] =

K−1∑
k=0

mk[n] · ck[n] (1)

where sk[n] is the kth analytic subband signal from a K-channel
filterbank. Each subband is then demodulated into a high-frequency
carrier ck[n], containing temporal fine structure, and a low-frequency
modulator mk[n], containing temporal envelope information.

Strictly speaking, sk[n] need not be subband signals. We adopt
the filterbank convention in order to remain consistent with the
methodologies of [3] and [5], wherein bandpass filters approximated
the cochlear filterbank in the human ear.

After decomposing x[n] according to (1), modulation filtering is
the act of convolving each mk[n] with a kernel g[n] to yield m̂k[n],
which is then recombined with the original carrier ck[n]. The final
modulation-filtered signal is synthesized as

x̂[n] =

K−1∑
k=0

m̂k[n] · ck[n] (2)

=

K−1∑
k=0

(g[n] ∗ mk[n]) · ck[n].

To measure the performance of a modulation filtering system,
Ghitza [5] devised the test that appears in block-diagram form in
Fig. 1. After forming x̂[n], we reapply the same demodulation al-
gorithm and compare each recovered modulator m̃k[n] to the cor-
responding m̂k[n]. In other words, we should be able to perfectly
recover the modified components that went into constructing x̂[n].
Any resulting discrepancy is regarded as artifact introduced by a flaw
in the modulation decomposition.

Schimmel [6] later formalized Ghitza’s test by computing the
empirical modulation frequency response (EMFR) as

Ge(ω) =
1

K

K−1∑
k=0

∣∣∣∣M̃k(ω)

Mk(ω)

∣∣∣∣ (3)
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Fig. 1. System diagram for testing modulation filtering efficacy.
where the desired outcome is for the recovered modulator to equal
the filtered modulator used in synthesis.

which directly computes the change in spectral power between the
original and the recovered modulators. If G(ω) is the frequency
response of g[n], then ideally Ge(ω) = G(ω). As both Ghitza and
Schimmel discovered, however, Ge(ω) depends heavily upon the
methods of the chosen modulation decomposition [5, 6].

The rest of this paper will use the empirical modulation trans-
fer function as a measure of performance. As detailed over the next
several sections, we show that a well-chosen modulation decompo-
sition, plus a carefully designed filterbank, ensures that Ge(ω) is
essentially equivalent to G(ω).

3. SUBBAND DEMODULATION

In Fig. 1, the “Demod(ulate)” block consists of two steps. First, we
define a carrier detection operator D such that

D{sk[n]} = ck[n] = exp(jφk[n]). (4)

Consequently, the envelope is given by

mk[n] = sk[n] · ck[n]∗ (5)

where superscript * denotes complex conjugation. We should be
clear in stating that (5) allows the envelope to be complex-valued,
depending on the choice for ck[n].

Another important result from demodulation is the instantaneous
frequency (IF) of a subband, defined in continuous time as

ωk(t) =
d

dt
φk(t). (6)

In practice, we compute a discrete-time version of (6) by applying a
derivative-approximating, finite-impulse response filter to the phase
signal φk[n].

At this point, the specifics of demodulation remain undeter-
mined. In fact, there are an infinite number of ways to factor a given
sk[n] into a modulator and carrier. Broadly speaking, demodulation
methods can be categorized as either coherent or incoherent. We
explain this distinction in the following subsections along with an
example of each.

3.1. Incoherent Demodulation (Hilbert Envelope)

A common method of incoherent demodulation is to separate mag-
nitude and phase, which defines φk[n] = � sk[n] so that

mk[n] = |sk[n]|, ck[n] = exp(j � sk[n]). (7)

In this case, mk[n] is called the Hilbert envelope of sk[n] and is
restricted to be real-valued and non-negative. Note that (7) is consis-
tent with (4) and (5) yet does not require an explicit carrier estimate
in order to find the modulator. For this reason the Hilbert envelope
is a form of incoherent demodulation.

The drawbacks of the Hilbert envelope are well-documented.
Most prominently, neither mk[n] nor ck[n] are necessarily bandlim-
ited [6], and the IF often extends beyond the bandwidth of sk[n]
and can even contain infinite spikes [8, 9]. Nevertheless, the Hilbert
envelope is standard in speech studies [3, 4] and will represent the
baseline for this paper.

3.2. Coherent Demodulation (Complex Envelope)

In contrast to incoherent demodulation, coherent demodulation de-
fines the modulator solely in terms of a detected carrier and the re-
lationship in (5). As a result, the coherent modulator is likely to be
complex-valued as mk[n] adopts any phase that is not captured by
the carrier estimate.

For this paper we use a form of coherent demodulation based on
spectral center-of-gravity (COG) [10, 7], which estimates the carrier
IF in terms of energy concentration in a time-frequency representa-
tion of sk[n]. As prescribed by [10], the coherent IF is

ωk[n] =

∫
ω Sk(ω, n) dω∫
Sk(ω, n) dω

(8)

where Sk(ω, n) is a short-time power-spectral density estimate of
sk[n] using an analysis window centered on time sample n. In other
words, ωk[n] is the centroid of the local spectrum in the vicinity of
sk[n − L/2], ..., sk[n + L/2], where L is the length of the analysis
window. In this way, the IF follows the average spectral energy of
the subband signal over time. Upon determining the IF, we proceed
to form the carrier by integrating ωk[n] and using the righthand side
of (4), by which the modulator mk[n] follows from (5).

Another possible form of coherent demodulation appeared orig-
inally in [6], and operates by lowpass filtering the unwrapped � sk[n]
and placing the residual phase into the modulator. Although achiev-
ing a bandlimited decomposition, it is difficult to interpret the effects
of smoothing over discontinuities in the Hilbert phase. By compar-
ison, the spectral COG is conceptually more elegant because of its
time-frequency interpretation.

4. MODULATION FILTERING A SINGLE SUBBAND

In our treatment of the sum-of-products model, we first focus on the
“product” part. As shown in [7], there are two necessary and suffi-
cient conditions on D for effective, arbitrary modulation filtering of
a single subband. To paraphrase, the conditions are:

1. the IF must be bounded and relatively smooth, and

2. the original carrier must be recoverable from the remodulated
subband.

The first condition stems from an underlying need to constrain
the bandwidth of ŝk[n] within the bandwidth of sk[n], as observed
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Fig. 2. Filterbank frequency responses for the Hamming-window
design with subband overlap (top) and the higher-order non-
overlapping design (bottom). Both exhibit subbands spaced 32 Hz
apart.

by [6]. Due to the erratic, often discontinuous nature of analytic sub-
band phase, the Hilbert decomposition does not comply with the first
condition and therefore fails Ghitza’s test. The coherent method, on
the other hand, does satisfy the first condition by expressly control-
ling the bounds of ωk[n].

The second condition was not considered by [6] but is just as
important, requiring the general recovery property of

D{m̂k[n] · ck[n]} = ck[n]. (9)

Unfortunately, the spectral COG fails to satisfy the second condition
[7]. Roughly speaking, coherent demodulation defines the carrier in
a signal-dependent way, so that modifying the signal (via modulation
filtering) can result in a different carrier estimate. In practice the
difference is small, on the order of Hertz, but can amount to a large
discrepancy when observing low-frequency modulator spectra.

Although it may appear to be a concession, the use of side in-
formation reminds us that a modulation-filtered signal is modified
with respect to a set of arbitrary carrier estimates. The perceptual
relevance of detected carriers and modulators is certainly a crucial
matter, but is beyond the scope of this paper. Instead, we are con-
cerned with establishing mathematical groundwork for modulation
filtering, which we argue is essential for understanding the percep-
tual roles of carrier and modulation frequency. In other words, our
hope is that a proper mathematical understanding will lead to a basis
for evaluating the relevance of the sum-of-products model.

5. FILTERBANK DESIGN

Relating to the “sum” component of the sum-of-products model,
an experimental factor affecting Ge(ω) is the effect of interfer-
ence between subbands in the filterbank design. Subbands that
overlap in frequency are related by some common information,
but modulation-filtering each subband separately can destroy the
consensus and lead to interference when the subbands are summed
together. This is related to issues in the inversion of modified short-
time Fourier transforms [11], and a similar point was noted in [5]
for cochlea-emulating filterbanks.

To reduce the amount of subband interference, we adjust
frequency-domain overlap between subbands in our filterbank de-
sign. For our purpose the short-time Fourier transform (STFT)
acts as a multirate filterbank for which a single parameter controls
subband overlap.

Consider the STFT definition, given as

sk[n] =

N−1∑
m=0

x[m] h[Rn − m] exp

(−j2πkm

K

)
(10)

where h[n] is a lowpass window and k = 0, 1, ..., K − 1. In the
above, each sk[n] is equivalent to a bandpass portion of x[n] that
has been frequency-shifted to baseband and then downsampled by a
factor of R.

For modulation filtering, we compare two filterbank designs:
standard and non-overlapping. There are K = 250 subbands in each
design, which results in uniformly-spaced subbands 32 Hz apart.
In the standard design, h[n] is a 250-point Hamming window with
about 2/3 frequency overlap between subbands. This is essentially
the same filterbank used in [6]. By contrast, the non-overlapping de-
sign uses a 2250-point windowed Dirichlet kernel with -6 dB band-
width equal to 2π/K. In both cases, the time-decimation rate R
is chosen for computational efficiency but is small enough to avoid
aliasing the subband mainlobes. Refer to Fig. 2 for frequency-
domain plots of the subband filters for each filterbank design.

We should also mention that an STFT filterbank requires a syn-
thesis stage, shown in Fig. 1, to reassemble the subbands and form
x̂k[n]. We use the synthesis equations and architecture presented in
[12] to design invertible STFT filterbanks.

6. EXPERIMENTAL RESULTS

To assess the performances of coherent and incoherent modula-
tion filtering, we conducted a series of experimental simulations on
recorded speech. We compared the Hilbert envelope and spectral
COG demodulation under identical conditions: with or without car-
rier side information, and using the standard or the non-overlapping
filterbank. The test signal in each experiment was a 10-second clip
of male speech sampled at 8 kHz. The lowpass modulation filter
was designed for a 2 Hz cutoff frequency and 40 dB stopband atten-
uation. For both of the coherent demodulation methods, we set the
respective parameters such that the IF signals ωk[n] had a bandwidth
of approximately 10 Hz.

Fig. 3a shows the EMFRs for both demodulation methods when
using the standard filterbank and no carrier side information. This
is approximately the same result as in [6], which already displays
a marked improvement in the coherent technique over incoherent.
Also similar to [6], the empirical responses peak at the location
of the next adjacent subband at 32 Hz. We plot only to 16 Hz,
though, which is analogous to the Nyquist rate in modulation fre-
quency when the subbands are 32 Hz wide.
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Fig. 3. Empirical modulation frequency responses for Hilbert (cir-
cles) and spectral COG (squares) compared to the ideal (dashed) in
three experimental setups: standard filterbank and no side info (a);
standard filterbank with side-info (b), and non-overlapping filterbank
with side info (c).

Fig. 3b repeats the experiment using the same filterbank but with
the inclusion of original carrier side information. A dramatic im-
provement can be seen in the coherent method, with close adherence
to the ideal passband and deeper stopband attenuation for low mod-
ulation frequencies.

Finally, Fig. 3c shows further improvement after incorporating
the non-overlapping filterbank in addition to carrier side informa-
tion. Using this configuration, the coherent EMFR closely matches
the ideal filter response, with roughly 20-25 dB more stopband at-
tenuation than even the best incoherent EMFR in Fig. 2a.

7. CONCLUSION

In this paper we showed that coherent modulation filtering can be
more effective than previously believed. As measured by the em-
pirical modulation frequency response, we demonstrated near-ideal

performance and 25 dB improvement in the ability to suppress un-
desired modulation frequencies compared to the standard incoherent
technique. This result was made possible by a full assessment of the
sum-of-products signal model, where the “sum” component refers
to subband summation and the “product” component refers to in-
dividual subband modulation. Addressing each component in turn,
we employed a filterbank with reduced subband interference while
retaining carrier side information to enhance the already beneficial
bandwidth-preserving properties of coherent modulation. With these
new developments, coherent modulation filtering offers a mathemat-
ically consistent framework for measuring the perceptual relevance
of modulation frequency in a sum-of-product decomposition, and is
a potentially useful new form of signal modification. For more re-
sources and Matlab code, refer to the Modulation Toolbox located at
http://isdl.ee.washington.edu/projects/modulationtoolbox/.

The authors wish to thank S. Schimmel of the University of
Zurich and Prof. B. Atal of the University of Washington for many
helpful insights.
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