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ABSTRACT

In model-based pattern recognition it is often useful to change the
structure, or refactor, a model. For example, we may wish to find
a Gaussian mixture model (GMM) with fewer components that best
approximates a reference model. One application for this arises in
speech recognition, where a variety of model size requirements ex-
ists for different platforms. Since the target size may not be known a
priori, one strategy is to train a complex model and subsequently de-
rive models of lower complexity. We present methods for reducing
model size without training data, following two strategies: GMM ap-
proximation and Gaussian clustering based on divergences. A vari-
ational expectation–maximization algorithm is derived that unifies
these two approaches. The resulting algorithms reduce the model
size by 50% with less than 4% increase in error rate relative to the
same–sized model trained on data. In fact, for up to 35% reduction
in size, the algorithms can improve accuracy relative to baseline.

Index Terms— Acoustic model clustering, KL divergence, Bhat-
tacharyya divergence, variational approximations.

1. INTRODUCTION

A problem that arises in probabilistic modeling is to approximate
one model using another model with a different structure (fewer pa-
rameters, different parameter sharing, etc.). For example, a common
task in automatic speech recognition (ASR) is to reduce the number
of components in a Gaussian mixture model (GMM) with a mini-
mal loss of accuracy. Whereas state-of-the-art ASR systems require
increasingly large acoustic models, commercial applications have a
variety of model size requirements, ranging from server-based ap-
plications that can accommodate large models, to embedded appli-
cations with modest memory capacities. Although it is possible to
train models of any given size, the desired size may not be known at
training time. It would be convenient to adapt an existing model to
different memory requirements, without having to revisit the training
data.
To address this, we optimize the parameters of a refactored acous-
tic model to best match a larger reference model. One approach
is to minimize divergence, such as the Kullback-Leibler (KL) [1]
or Bhattacharyya [2] divergences, between the probability density
functions (pdfs) of the reference and refactored models. To this end
we introduce a variational expectation–maximization algorithm that
minimizes the KL-divergence between the refactored and reference
models. Another approach is to cluster the components of the ref-
erence model, based on their pair-wise divergences. Both methods
use a maximum likelihood merging criterion, and reduce the size of
the acoustic model without significant loss of accuracy. In fact, we
show that for modest reductions in size the word error rate (WER)
can even improve.

2. MODELS

Acoustic models are typically composed of phonetic states with ob-
servation models that are dependent on the phonetic context. The ob-
servation models are GMMs of the observed acoustic features. Diag-
onal covariance Gaussians are used as computation time and storage
is greatly reduced compared to full covariance Gaussians. Reducing
the overall size of our model requires reducing the number of com-
ponents used by some or all of the GMMs. We first consider ways
of reducing each GMM to a given size, before turning to the prob-
lem of choosing the number of Gaussians allocated to each GMM in
order to reach the targeted total number of Gaussians for the whole
acoustic model.
Let us consider a GMM f with continuous observation x ∈ R

d,

f(x) =
∑

a

πafa(x) =
∑

a

πa N (x; μa;Σa), (1)

where a indexes components of f , πa is the prior probability, and
N (x; μa;Σa) is a Gaussian in x with mean vector μa and covari-
ance matrix Σa.

3. DIVERGENCE MEASURES

The KL divergence [1] is commonly used to measure the dissimilar-
ity of two pdfs f(x) and g(x),

DKL(f ||g)
def
=

∫
f(x) log

f(x)

g(x)
dx (2)

= L(f‖f) − L(f‖g), (3)

where L(f‖g) is the expected log likelihood of g under f

L(f‖g)
def
=

∫
f(x) log g(x)dx. (4)

For two Gaussians fi(x) and fj(x) from GMM f(x) with x ∈ R
d,

DKL(fi, fj) has a closed–form expression:

DKL(fi||fj) =
1

2

[
log

|Σj |

|Σi|
+ Tr(Σ−1

j Σi − Id)

+ (μi − μj)
T
Σ
−1
j (μi − μj)

]
.

(5)

The KL divergence is not symmetric as DKL(f ||g) �= DKL(g||f).
It reaches a minimum for f = g when DKL(f ||g)=0 and is always
positive as DKL(f ||g) ≥ 0∀f, g.
The Bhattacharyya error bound is also a commonly used similarity
measure [2],

B(f, g)
def
=

1

2

∫ √
f(x)g(x)dx, (6)
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from which the Bhattacharyya divergence is derived as

DB(f, g)
def
= − log 2B(f, g). (7)

For two Gaussians fi(x) and fj(x), the Bhattacharyya divergence
has a closed–form expression [3]:

DB(fi, fj) =
1

8
(μj − μi)

T

(
Σi + Σj

2

)−1

(μj − μi)

+
1

2
log

∣∣∣∣Σi + Σj

2

∣∣∣∣ − 1

4
log |ΣjΣi|.

(8)

B(f, g) is symmetric and, if f = g, then B(f, g) = 1
2

. Therefore
DB(f, g) is also symmetric, DB(f, g) = 0 if and only if f = g and
DB(f, g) ≥ 0 otherwise.
For GMMs, unfortunately, there are no closed–form expressions for
either the KL or the Bhattacharyya divergence. Thus, to optimize
based on divergence, we have to either use algorithms that depend
only on divergence between individual Gaussians or use approxima-
tions to the divergences between GMMs such as [4, 5].

4. VARIATIONAL EXPECTATION-MAXIMIZATION

To optimize the similarity between the refactored model g, with
parameters {πb, μb,Σb} for each component b, and the refer-
ence model f , we first consider minimizing the KL divergence
DKL(f‖g) = L(f‖f) − L

(
f‖g

)
. Using the variational approx-

imation in [4] leads to a simple expectation–maximization (EM)
algorithm to minimize the divergence. Ignoring the constant term
L(f‖f), we maximize the variational lower bound on L

(
f‖g

)
.

Defining variational parameters φb|a > 0, where a indexes compo-
nents of f and b indexes components of g, such that

∑
b
φb|a = 1,

and using Jensen’s inequality, we obtain

L
(
f‖g

) def
=

∑
a

πa

∫
fa(x) log

∑
b

πbgb(x)dx

≥
∑

a

πa

∫
fa(x)

∑
b

φb|a log
πbgb(x)

φb|a

dx

def
= Lφ

(
f‖g

)
. (9)

This is a lower bound on L
(
f‖g

)
for any φ, so we get the best bound

by maximizing Lφ

(
f‖g

)
with respect to φ by taking derivatives and

using a Lagrange multiplier to enforce normalization. The maximum
value gives the estimation (E) step:

φ̂b|a =
πbe

−DKL(fa‖gb)∑
b′

πb′e
−DKL(fa‖gb′

)
. (10)

Note that φ̂b|a is a measure of the affinity between the Gaussians
fa and gb. For a given φ, Lφ

(
f‖g

)
is convex with respect to the

parameters of gb; setting derivatives to zero and solving for μb, Σb

and πb, yields the maximization (M) step:

μb =

∑
a

πaφb|aμa∑
a

πaφb|a

, (11)

Σb =

∑
a

πaφb|a

[
Σa + (μa − μb)(μa − μb)

T )
]

∑
a

πaφb|a
, (12)

πb =
∑

a

πaφb|a. (13)

Even if all Σa are diagonal covariance, the maximum likelihood Σb

will in general be full covariance. Constraining the refactored model
to have diagonal covariance, this simplifies to

Σb(k, k) =

∑
a

πaφb|a

[
Σa(k, k) + (μa(k) − μb(k))2

]
∑

a
πaφb|a

,

where k∈1, . . . , n, and Σb(k, k) is the kth diagonal element of Σb.
If we constrain φ to be discrete, then the E-step φ̂b|a selects the set
of reference components a to be clustered to form component b. The
M–step then computes the maximum-likelihood Gaussian given this
selection. This discretization yields a slightly weaker bound used
in [6] as a special case. This is also equivalent to K–means clus-
tering of Gaussians using the KL divergence, as in [7]. For differ-
ent approaches, based on minimizing the mean–squared error be-
tween the two density functions, see [8], or based on compression
using dimension–wise tied Gaussians optimized using divergences,
see [9].
The variational EM algorithm requires an initial refactored model g,
with a given number of components. There are many methods to
obtain such an initial model. In the interest of efficiency, we explore
greedy methods in which Gaussians from the reference model are
merged together pair by pair. These algorithms can be seen as per-
forming an alternate version of the E-step above, followed by exactly
the same M–step to merge the selected Gaussians.

5. GREEDY CLUSTERING

A simple clustering algorithm results from iteratively selecting pairs
of Gaussians to merge, based on an objective function that assigns a
cost to each potential merge. The pair of Gaussians that minimizes
the cost function is selected, and the Gaussians are merged. Merging
is accomplished using the M–step (11)–(13), with the appropriate
choice of φ, as described below. After merging two Gaussians we
can treat the resulting model as the reference and iterate. To find
the best number of Gaussians for each GMM given a global target,
we choose the GMM in which to perform a merge at each iteration
based on the cost. Thus, for each GMM f , we compute the cost for
all pairs of Gaussians i, j in f , forming a matrix Cf (i, j). Across
all GMMs, we find the pair with the minimum cost.
Define a function f ′ := merge(f, i, j) taking GMM f and returning
a new version of f with components i and j merged into a single
Gaussian according to (11)–(13), where we set φb|i = 1 and φb|j =
1, and otherwise φb|a = 1 for b = a and a /∈ i, j.

Input: Acoustic Model
Output: Clustered Acoustic Model
foreach GMM f do

foreach Gaussian pair (i, j) ∈ f do
Compute Cf (i, j);

end
end
while Target number of Gaussians not reached do

foreach GMM f do
Find pair with smallest cost Cf (i, j);
(f ′, i′, j′) := arg min

f,i,j

Cf (i, j);

end
In GMM f ′;
Merge: f ′ := merge(f ′, i′, j′);
Update Cf ′ ;

end
Algorithm 1: A greedy clustering algorithm.
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(a) WER results for all clustered and reference models.
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(b) WER results for the 40K-100K Gaussians region.

Fig. 1. WER as a function of the number of Gaussians. Results for baseline models (built from data) as well as clustered models using
Bhattacharyya, KL divergence, Local Maximum Likelihood and variational EM are plotted.

Note that some cost functions are symmetric, so only N(N−1)
2

cost
values need be stored in Cf (i, j), where N is the original number
of Gaussians in the GMM. This algorithm is well suited to be par-
allelized since each GMM can be processed independently. Indeed,
the only dependency across GMMs is created when looking for the
next best pair to merge across all GMMs. However, within a GMM,
the sequence of merges will always be the same. It is therefore possi-
ble to run the merge algorithm on each GMM in parallel all the way
to one final Gaussian. The only information to keep is the cost and
the indices of the best pairs of Gaussians for each merge. This infor-
mation can be stored as a merge–tree for each GMM f . To generate
a merged model, one needs only to search across all merge-trees for
the best pair, then again for the next best pair, and so on.
In general any cost function may be used, including the variational
divergence between the reference and refactored GMMs mentioned
above. In such a case, the greedy algorithm will also improve a
bound on the likelihood of the refactored model. However varia-
tional KL divergence is a function of all the Gaussians in the GMM
and thus can be computationally expensive for every potential merge.
Instead we can consider a local cost function, that is only a function
of the two Gaussians to be merged.

5.1. Pairwise Divergence Clustering

A heuristic local cost function for greedy merging results from us-
ing KL or Bhattacharyya divergence between the merged Gaus-
sians. That is, Cf (i, j) = DKL(fi||fj), where fi, and fj are two
Gaussians from the reference GMM f (and similarly for the Bhat-
tacharyya divergence). The rationale is that the smaller the diver-
gence between the Gaussians, the less distortion there should be in
the merged model.
In models with diagonal covariance, this method presents a potential
problem. It does not consider whether the full-covariance merged
Gaussians may be poorly approximated by a diagonal covariance (or
otherwise constrained) Gaussian. Thus, two pairs of Gaussians may
have an equal divergence-based cost, despite the fact that one pair
results in a good approximation, and the other pair results in a poor
one.

5.2. Local Maximum Likelihood (LML) Merging

In order to take into account constraints such as diagonal covariance
on the merged Gaussians, here we consider the merged Gaussian
in the local cost function. For the Gaussian pair fi and fj to be
merged, let us use the notation f̃i + f̃j to refer to a local GMM f

composed of two weighted Gaussians f̃i = π′ifi and f̃j = π′jfj ,
where π′i = πi/(πi + πj) and π′j = 1 − π′i. Let g be the single
Gaussian resulting from merging f̃i and f̃j according to (11)–(13).

The KL divergence DKL(f̃i + f̃j ||g) is sensitive to how well f̃i +

f̃j is approximated by g. Thus. if g is constrained to be diagonal
covariance, and merging fi and fj results in full covariances, then
the cost will be greater.
This cost function also has a natural interpretation in terms of the
likelihood of the refactored model. From (2), the KL divergence
between the local GMM f̃i + f̃j and g

DKL(f̃i + f̃j ||g) =

∫
(f̃i + f̃j) log

f̃i + f̃j

g
(14)

= L(f̃i + f̃j‖f̃i + f̃j) − L(f̃i + f̃j‖g), (15)

which is the difference of likelihoods between the local GMM f̃i+f̃j

and the merged Gaussian g. Thus, DKL(f̃i + f̃j ||g) gives a measure
of the loss in likelihood if we were to merge f̃i and f̃j . Therefore, the
pair (f̃i, f̃j) that minimizes (15) locally maximizes the likelihood
of the merged model. An alternate version can be obtained using
the un–normalized weights πi and πj . This would give priority to
merging Gaussians with smaller weights. For a given KL distance
between f̃i + f̃j and g, less error is introduced if the Gaussian pair
has smaller weights, so this alternative may work better.
No closed–form solution exists for the term L(f̃i + f̃j‖f̃i + f̃j)
in (15), and in our experiments ignoring this term produced poor
results. Fortunately, we can use the variational approximation
Dvariational(f̃i + f̃j ||g) given in [4].
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6. EXPERIMENTS

All experiments were run on internal IBM databases. The train-
ing set is composed of 786 hours of US English data, consisting
of 10,309 speakers for a total of 803,533 utterances. It consists of
in-car speech in various noise conditions, recorded at 0 mph, 30 mph
and 60 mph with 16KHz sampling frequency. The test set is 38,905
sentences for a total of 205,788 words. It is a set of 47 different tasks
of in-car speech with various US regional accents. It is a superset of
the test data described in [10].
The reference model for this paper is a 100K Gaussians model built
on the training data. We use a set of 91 phonemes, each modeled
with a three-state left to right hidden Markov model. These states
are modeled using two-phoneme left context dependencies, yielding
a total of 1519 context-dependent (CD) states. The acoustic models
for these CD states are built on 40-dimensional features obtained
using Linear Discriminant Analysis (LDA). CD states are modeled
with 66 Gaussians on average. Training consists of a sequence of
30 iterations of EM algorithm where CD state alignments are re-
estimated every few steps of EM.
We built 7 baseline models from training data with 10K, 25K, 50K,
65K, 75K, 90K and 100K Gaussians (our reference model). WERs
for the baseline models are given in Table 1.

WER (%) vs. Model Size
Methods 10K 25K 50K 65K 75K 90K 100K
Baseline 2.33 1.90 1.64 1.60 1.59 1.53 1.61

Table 1. Baseline numbers

The reference WER for 100K Gaussians is 1.61%. For smaller size
models, WERs remain within 5% relative over the range of 50K
to 100K Gaussians, with significant increases in error rate for 25K
Gaussians or fewer.
Using Algorithm 1 from Section 5, the reference model (100K) was
clustered down all the way to 10K Gaussians. Intermediate mod-
els were saved every 5K Gaussians, i.e. 95K, 90K, ..., 10K. This
was carried out for each similarity measure (KL, Bhattacharyya, and
LML), resulting in 18 models per condition for a total of 18x3 clus-
tered models. Decoding results with these models as a function of
model size are plotted in Figure 1. The Bhattacharyya and LML per-
form somewhat better than the KL divergence over the 100K to 40K
range. Below 40K, the error rates begin to increase, reaching a WER
62% higher relative to baseline for 10K (2.33% to 3.77% for LML).
Over the 40K to 100K range, LML follows the baseline results more
closely than the other methods.
Variational EM was carried out by initializing the procedure using
LML clustered models. The decoding results for these models are
also plotted in Figure 1. We note that, below 25K Gaussians, varia-
tional EM improves error rates relative to LML, with a 15% relative
WER improvement at 10K. Surprisingly, however, the variational
EM algorithm does slightly worse than LML for clusterings over
25K, despite the fact that both variational EM and LML are derived
from the variational KL divergence. Possibly, this stems from the
mismatch between the optimized model and the model used by the
recognizer. A standard optimization used in recognition is

f(x) =
∑

a

πafa(x) ≈ max
a

πafa(x). (16)

This max approximation is more accurate for GMMs in which Gaus-
sian components overlap less. Such an approximation may favor
hard clustering done in the greedy algorithms over soft clustering

done by variational EM. This may also explain the better perfor-
mance of the greedy algorithms. Since the 100K model is trained
using the sum rather than the max approximation, it may have sig-
nificantly overlapping Gaussians. We are investigating this currently
by comparing recognition and training using both the max and sum
models. In addition we are experimenting with the hard-clustering
version of the variational EM algorithm, in which φ is constrained
to be discrete.

7. CONCLUSION

We have described methods for optimizing a refactored GMM model
to best match a reference GMM model. The greedy clustering meth-
ods that we introduce are specific to mixture models and tend to
work especially well in the case of GMM-based acoustic models. In
particular, the performance of LML refactored models closely fol-
lows that of models trained from data over a range of model sizes
from 100K down to 40K. The variational EM algorithm can be used
to optimize models with structures that go beyond GMMs. We envi-
sion that the variational EM algorithm will be useful for a variety of
other applications.

8. REFERENCES

[1] S. Kullback, Information Theory and Statistics, Dover Publi-
cations, Mileona, New York, 1997.

[2] A. Bhattacharyya, “On a measure of divergence between two
statistical populations defined by probability distributions,”
Bull. Calcutta Math. Soc., vol. 35, pp. 99–109, 1943.

[3] Keinosuke Fukunaga, Statistical Pattern Recognition, Aca-
demic Press, Inc., San Diego, CA, 1990.

[4] John Hershey and Peder Olsen, “Approximating the Kull-
back Leibler divergence between gaussian mixture models,” in
ICASSP, Honolulu, Hawaii, April 2007.

[5] Peder Olsen and John Hershey, “Bhattacharyya error and di-
vergence using variational importance sampling,” in ICSLP,
Antwerp, Belgium, August 2007.

[6] Jacob Goldberger and Sam Roweis, “Hierarchical clustering
of a mixture model,” in Advances in Neural Information Pro-
cessing Systems 17, Lawrence K. Saul, Yair Weiss, and Léon
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