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ABSTRACT

We develop a novel extension to the Ratio Semi-definite Classifier,
a discriminative model formulated as a ratio of semi-definite poly-
nomials. By adding a hidden layer to the model, we can efficiently
train the model, while achieving higher accuracy than the original
version. Results on artificial 2-D data as well as two separate phone
classification corpora show that our multi-layer model still avoids the
overconfidence bias found in models based on ratios of exponentials,
while remaining competitive with state-of-the-art techniques such as
multi-layer perceptrons.

Index Terms— Pattern recognition, Speech recognition

1. INTRODUCTION

Exponential-based probability models for classification, such as
Gaussian mixture models or multi-layer perceptrons (MLPs) [2],
whether right or wrong, are often quite confident in their decisions
even in regions of low training data concentration. For MLPs, this is
the case even though theoretically, given sufficient training data and
the “right” MLP, the model will converge to the true posterior distri-
bution p(y|x) — this is because in practice the model is almost never
right and the training data is almost never sufficient. Moreover, ad-
ditional scaling factors, such as p(y|x)α with 0 < α < 1, followed
by renormalization does not change the underlying exponential form
of such models and can be seen as only a palliative.

Low entropy posteriors may be acceptable in some situations.
But there are a number of instances in which they may be less de-
sirable. Take, for instance, ranking classifiers, where we want not
just a probability of a correct class but a numerically ordered list.
Meaningful rankings become difficult when only vanishing proba-
bility exists to divide amongst non-top-ranked categories.

Another situation to consider is speech recognition (ASR).
When decomposing an ASR system, the acoustic model typically
uses an exponential-based probability model while the language
model often uses an n-gram, which is much less likely to have a low
entropy bias. Often one needs to find a parameter to trade-off be-
tween the two scores to compensate for the different dynamic ranges.
By using an acoustic model lacking an overconfidence bias, we may
be able to include alternative options in a beam-constrained search
while eliminating or reducing the need for a trade-off parameter.

Finally, there is the application motivating our work, the Vocal
Joystick (VJ) [1]. Designed as an assistive device for individuals
with motor impairments, the goal is to allow voice-based continuous
control of mouse movement, video games, drawing [5], or even a
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small robotic arm [6]. The VJ currently uses vowel quality to con-
trol 2-D movement direction while loudness determines speed. For
mouse pointer control, vowel quality alone determines the move-
ment direction. The system must run in real-time, as vocal tract
micro-adjustments must immediately be reflected on-screen.

The VJ has had much success using an MLP-based vowel clas-
sifier where posterior probabilities act as mixing weights to estimate
vowel quality [13]. This classifier, however, tends to be overconfi-
dent (low entropy) especially when input vowels are located between
standard vowel categories — this tends to produce motion only in
one of the cardinal or ordinal directions thus making it difficult to
produce smooth curves. Our ultimate goal is to find models that
can smoothly transition between classes, without a sudden jump at
classification boundaries. Specifically, we want models that avoid
highly confident decisions in areas with sparse data or conflicting
labels. High confidence decision should be restricted only to areas
with densely packed data from a single class, and even in those high
confidence regions, we prefer posteriors with entropy high enough
to allow meaningful rankings. We want, moreover, to do this using
a method that does not sacrifice accuracy, computational tractability,
and real-time response on modern microprocessors.

Last year, we presented the Ratio Semi-definite Classifier
(RSC) [11], a discriminative multi-class classifier based on a ra-
tio of semi-definite polynomials that does not rely on a fast-growing
functional form such as an exponential. Derived from the model
presented in [3], one interesting property of the RSC is that, unlike
classifiers based on ratios of exponentials, it avoids a bias towards
low entropy posterior distributions. This model provides a com-
pelling alternative, but motion produced by an RSC is often too soft
and accuracy suffers as well, relative to an MLP. In past work, we
also evaluated a modified adaptive Kalman filter to provide move-
ment in arbitrary directions [10], but the time lag inherent to the
approach makes it hard to use for real-time control. We have also
studied a Gaussian process approach [12], but so far that model’s
computational demands have exceeded our real-time requirements.

Drawing inspiration from the addition of a hidden layer to the
original perceptron to create an MLP, we propose in this work to
augment the original RSC with a hidden layer, forming what we call
a multi-layer RSC (ML-RSC). This model is continuous and differ-
entiable, and we show that its training is simple and easy via stochas-
tic gradient descent. We compare ML-RSC, MLP, and RSC on both
2-D artificial data (for analysis purposes) and real speech data (both
the vocal-joystick vowel corpus and also TIMIT). We find that, as
expected, the accuracy of the ML-RSC significantly improves rel-
ative to an RSC but without sacrificing the beneficial high-entropy
properties as does the MLP.
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2. PROPOSED MODEL

As presented in [11], the basic RSC is:

p(y|x) =
(x − dy)T Ay(x − dy)∑
k(x − dk)T Ak(x − dk)

(1)

where x are the input features and the parameters to be learned are
Θ = {Ak, dk}K

k=1 where K is the number of classes. In order
to be a valid probability distribution, we must have Ak � 0 ∀k.
Parameterizing each matrix Ak as Ak = BkBT

k can guarantee semi-
definiteness at the loss of convexity, as seen in [14]. The dk vectors
are interesting in that p(k|x = dk) = 0 — as such, they are more
like anti-means than the typical mean vectors we find in models such
as Gaussians (or mixtures thereof). To avoid confusion, we refer to
these dk vectors as shift vectors.

Given training data D = {(xi, ti)}N
i=1 where xi are feature vec-

tors and ti are target label distributions, we can put our problem in
a conditional maximum likelihood framework. Learning RSCs with
hard (integral) targets is solved via an optimization problem:

min
Θ

−
∑

i

log
(xi − dyi)

T ByiB
T
yi

(xi − dyi)∑
k(xi − dk)T BkBT

k (xi − dk)
. (2)

Here, the reason for parametrization of A becomes clear: the
original version of this problem is an instance of semi-definite pro-
gramming [15] which, while polynomial in complexity, can be in
practice quite computationally expensive for problem sizes at our
scale. Although we have sacrificed convexity, optimization methods
such as stochastic gradient descent have proven quite successful for
optimizing non-convex models such as MLPs [2]. We have shown
this same approach works well for RSCs [11].

2.1. Multi-layer RSC

Although the RSC quite successfully avoids a low-entropy bias
while producing good results, there are some data sets on which
it achieves relatively poor accuracy, as shown in Section 3. Ad-
ditionally, we have observed that as the number of classes grows,
its entropy starts to show a high-entropy bias quite opposite to the
problem we find with the MLP.

One solution is to extend the RSC in a way similar to how the
MLP extends the perceptron: we can add a hidden layer to the RSC
allowing us to learn a non-linear mapping from our input features
to hidden units. We can then treat the hidden unit outputs as input
features to an RSC. In the event that a small hidden layer with dimen-
sionality smaller than the original input features can be used, this ap-
proach also allows us to speed both training and evaluation over the
original RSC since the ratio-semidefinite portion of the computation
dominates. We note that although the resulting non-linear projec-
tion is non-convex, neither is our originally proposed RSC, yet the
ML-RSC still yields an efficient effective training procedure and has
good performance (see below).

Define z = σ(Wx+b) where σ(x) = 1
1+e−x is a sigmoid. The

posterior distribution of a ML-RSC is then:

p(y|x) =
(z − dy)T ByBT

y (z − dy)∑
k(z − dk)T BkBT

k (z − dk)
. (3)

The training objective function of Equation 2 also changes in a
straightforward manner.

Given our objective, the ML-RSC updates are quite simple. Due
to the use of stochastic gradient descent, we need the gradient for

only one point at a time. We therefore drop the summation over
all points i for simplicity, and consider the cross entropy objective:
E′ = −∑

k tk ln p(yk|x).

Define αk(z) = (z − dk)T BkBT
k (z − dk) and β(z) =∑

k αk(z) so that log p(y|x) = log
αy(σ(x))

β(σ(x))
. Differentiating with

respect to Bk and dk, respectively, yields

∂E′

∂Bk
= 2

∑
j

tj

(
αj − β · δ(k = j)

αjβ

)
(z − dk)(z − dk)T Bk

∂E′

∂dk
= −2

∑
j

tj

(
αj − β · δ(k = j)

αjβ

)
BkBT

k (z − dk).

Both of these are identical to the gradients for the regular RSC if we
treat the hidden unit outputs z as our input features. For the weight
updates, we follow a process similar to standard back propagation:

∂E′

∂W
= 2

∑
k

(
αk − tkβ

αkβ

) (
BkBT

k (z − dk) ◦ z ◦ (1 − z)
)

xT

where ◦ is the Hadamard (elementwise) product which in this case is
performed after any matrix-vector multiplications, and 1 is a vector
of ones. By appending an extra dimension with a constant 1 onto
input vector x, this handles the input-to-hidden layer biases as well.

2.2. Regularization and Penalty

We add regularization [2, 9] terms to the training objective via the
Frobenius norm of the matrices Bk, the L2 norm of the shifts dk,
and the Frobenius norm of the weight matrix W . We use regu-
larization coefficients λB , λd and λW , respectively. As detailed
in [11], if dk = d ∀k, the RSC is not continuous where x = d
(or z = d in the ML-RSC). We thus introduced a penalty 1

|C| where

C =
∑K

k=1(dk − μ)(dk − μ)T , with μ = 1
K

∑
k dk. We expect

this penalty may be even more important here since the hidden unit
outputs z will change during optimization and can possibly saturate,
unlike the input features x. In practice, a very small weight λs on
this term has proven sufficient. For full details, see [11].

With the regularization terms and penalty, the final objective is:

E = E′ + λB

∑
k

‖Bk‖2
F + λd

∑
k

‖dk‖2
2 + λw‖W‖2

F + λs
1

|C| .

The final derivatives are thus:

∂E

∂Bk
=

∂E′

∂Bk
+ λBBk (4)

∂E

∂dk
=

∂E′

∂dk
+ λddk − λs

2

K|C|C
−1(dk − μ) (5)

∂E

∂W
=

∂E′

∂W
+ λW W. (6)

3. ANALYSIS ON ARTIFICIAL 2-D DATA

To better understand the ML-RSC compared to the RSC and MLP,
we first looked at the performance of each model on artificial 2-D
data. We used 4-class Gaussian mixture data with 2 components per
mixture.

For each classifier, we did a manual parameter search and looked
at decision boundaries and entropy over a region enclosing the train-
ing data. The data appears in Figure 1(a) and combined decision
region and entropy plots appear in Figures 1(b), 1(c), and 1(d). The
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color at each point is a linear combination of colors weighted by
probabilities, and entropy at each point determines brightness. A
fully saturated color represents lowest entropy, and black represents
maximal entropy. The best MLP used a total of 7 hidden units, while
the best ML-RSC used 14.

(a) 4-class training data (b) MLP

(c) ML-RSC (d) RSC

Fig. 1. Color plots showing (a) training data used, (b) MLP (7 hid-

den units), (c) ML-RSC (14 hidden units), and (d) original RSC, all

trained on the same data. In all cases, brightness corresponds to con-

fidence, and the colors are a linear combination of predicted labels

weighted by the probability of each label.

As we can see, the original RSC clearly has much trouble with
this data; its error on the training data is 30%. The MLP had a
training set error of 1.775% and the ML-RSC’s error was 1.725%,
an insignificant difference (proper held-out test sets showing gener-
alization performance are used below with the real data).

The entropy results are also interesting. The RSC is lacking in
confidence everywhere, in addition to its high error rate. As ex-
pected, the MLP is much more confident than the ML-RSC in gen-
eral, losing confidence only right around decision boundaries. The
ML-RSC is more confident in areas with data, but its confidence
starts to fall quickly in areas lacking data. The ML-RSC’s entropy is
lower than that of the MLP 27% of the time in this plot area, and its
mean normalized entropy over the area is 0.30, versus 0.15 for the
MLP. The RSC, by contrast, had a mean normalized entropy of 0.74.
Based on this preliminary result, we have a very promising improve-
ment over the original RSC. The ML-RSC retains the high accuracy
of the MLP, while overcoming the low entropy bias yet retaining the
ability to be confident given sufficient training data.

4. EXPERIMENTAL ENVIRONMENT

We have tested our model on two data sets. In both cases, we used
MFCCs with first-order deltas giving 26-d feature vectors. Frames
were 25ms long with a 10ms shift.

The first data set is the Vocal Joystick Vowel Corpus [7]. This is
a set of vowels collected specifically for the VJ project. We created
a training set from 21 recording sessions (2 speakers appear twice,

VJ Dev 4 class 8 class
Acc. Entropy N Acc. Entropy N

MLP 98.5% 0.12/0.21 75k 74.6% 0.77/0.55 4.8k

RSC 98.2% 0.89/0.37 133k 74.9% 2.73/0.15 266k

ML-RSC 99.2% 1.60/0.21 7.2k 75.6% 1.62/0.46 99k

VJ Test 4 class 8 class
Acc. Entropy N Acc. Entropy N

MLP 93.1% 0.18/0.28 75k 68.4% 0.86/0.58 4.8k

RSC 91.5% 1.01/0.39 133k 64.8% 2.74/0.15 266k

ML-RSC 93.1% 0.26/0.30 7.2k 66.1% 1.65/0.49 99k

Table 1. Top: Dev set results for the VJ Corpus. Only the best

results for each model are shown. Bottom: Test set results using the

best models based on dev set results. Entropy is given as mean/dev.

although there is only partial overlap in their sounds), a development
set of 4 speakers, and a test set of 10 speakers. All speakers come
from the earlier data collection efforts described in [7] and capture
the wide variability in human vowel production. We considered ut-
terances containing only a single vowel. We tested two conditions:
for the 4 vowel case, there are approximately 275k training frames
(1931 utterances), and 550k frames (3867 utterances) for the 8 vowel
case. For both development and testing, we determined accuracy val-
ues by splitting the data 6 ways, calculating accuracy over 5 of the 6
sets, and taking the average result. Experiments have shown that the
train/dev sets and the test set on this corpus are not well-matched,
creating an interesting challenge for classifiers.

Our second data set is TIMIT [4], a standard database often used
for phone classification. We randomly selected 40 speakers from
the training set for a 400 utterance development set. We used the
standard test set and size-39 phone set described in [8].

In all cases, we grouped windows of 7 frames together, giving
182-d input vectors. This has proven to be an optimal number on
the VJ corpus, and on TIMIT we used 7 instead of a more typical 9
to help reduce training time for the original RSC. The ML-RSC, by
contrast, is limited more by the size of the hidden layer than the size
of the input vectors.

We compared the ML-RSC to a 2-layer MLP and to an original
RSC. For the Vocal Joystick corpus, we did a complete grid search
over a substantial range of values to determine the best values for
both the number of hidden nodes for the MLP and ML-RSC as well
as regularization coefficients for all models. The exception was that
for the RSC and ML-RSC we set λs = 10−10 to be small so that
it will have a significant effect only if the shifts are nearly equal.
For TIMIT, all models used tied regularization coefficients to reduce
search time. We noticed that the MLP often did best with regular-
ization coefficients of 0 when tying the parameters, so we also tried
setting λW = 0 for the ML-RSC while varying λB and λd (which
remained tied).

5. RESULTS AND DISCUSSION

Development set results on the VJ Corpus appear in the top half of
Table 1. We see that the original RSC’s accuracy approaches that of
the MLP on 4 classes, and passes it on 8. The RSC’s entropy seems
reasonable on 4 classes, but is quite high in the 8 class case. The
ML-RSC, on the other hand, shows the best dev results under both
conditions. Training MLPs with hidden layer size set to approxi-
mately equal the number of parameters of the best ML-RSCs gave
results slightly worse than the best MLP results.

The bottom half of Table 1 shows test-set results. The two sets
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Fig. 2. Plot showing entropy over time for each classifier (8 class) on

a diphthong /i-u/ with falling pitch, with spectrogram. The speaker

changed vowel quality slowly until late in the utterance, hence the

rise in entropy at the right edge.

TIMIT Dev Test Num.

Acc. Entropy Acc. Entropy Prm.

MLP 68.8% 1.43/0.97 68.2% 1.45/0.98 911k

RSC 49.8% 3.36/0.91 48.9% 3.38/0.91 1.3M

ML-RSC 59.9% 2.27/1.03 59.0% 2.29/1.03 333k

Table 2. Results for TIMIT, including parameter counts. Only the

best dev results for each model are shown, and test results are based

on that same set of parameters. Entropy is given as mean/std. Maxi-

mum possible entropy is ≈ 5.29.

are reasonably mismatched (see [7]) so accuracies have fallen. While
the original RSC falls short of the baseline MLP results in both cases,
the ML-RSC actually matches the MLP results for the 4 class data
but not not quite on the 8 class data.

The ML-RSC shows a significant improvement over the RSC,
but still with higher entropy values than the MLP, thus validating
our approach on this data. We can moreover discriminatively adapt
the model to each user [10] for further improved accuracy. This
reinforces the positive impression from the 2-D toy data.

We also show a plot (Figure 2) of a user producing a slow diph-
thong, a continuously voiced transition from /i/ to /u/, with a falling
pitch. With the 8 class model, the RSC entropy is always high —
seemingly under-confident. The rise at the right end of the utter-
ance exists, but is very small. The MLP, on the other hand, is quite
confident everywhere except for near the decision boundary. The
ML-RSC, by contrast, better captures the change in vowel quality
as the speaker slowly begins to shift from /i/ to /u/ prior the more
sudden change near the end.

On TIMIT, the RSC is again the least accurate (Table 2). The
ML-RSC moreover shows a vast improvement over the RSC in terms
of accuracy without worse entropy properties, but it is not as good
accuracy-wise as the MLP. The number of parameters in the best
case for the MLP (1500 hidden units) is larger than the best ML-RSC
(which used 150 hidden units). An MLP with parameters compara-
ble to the best ML-RSC gets 65.11% accuracy (100 hidden units) and
66.69% (200 hidden units). An ML-RSC with comparable parame-
ters to the best MLP has not yet been tested. Moreover, the optimal
number of hidden units for the ML-RSC along with the best regular-
ization coefficients was not searched as thoroughly for TIMIT as it
was for the VJ data (our primary application).

6. CONCLUSIONS AND FUTURE WORK

We have introduced a multi-layer extension to the ratio semi-definite
classifier yielding vastly improved flexibility. This ML-RSC has
been shown to produce accuracies competitive with state-of-the-art
discriminative classifiers while avoiding both an overconfidence and
an under-confidence bias. The ML-RSC shows a large accuracy im-
provement on TIMIT over the RSC, yet still lags behind the MLP
accuracy at its current model size. The ML-RSC, however, appears
to have the best accuracy/entropy trade-off of the three models.

In future work, we will investigate the ML-RSC as a ranking
classifier, will present theoretical results regarding the ML-RSC’s
higher entropy properties, and introduce computationally cheaper
training algorithms that will allow the ML-RSC to utilize as large
a hidden-unit size as the MLP with comparable computational costs
during training.
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