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ABSTRACT

In this paper, we introduce a novel pronunciation modeling
technique that in contrast to existing techniques uses word
context information. This context-dependent pronunciation
modeling is designed to overcome the challenges posed by
absence of diacritics in transcripts for training acoustic mod-
els for Arabic dialects. To demonstrate the efficacy of the
proposed pronunciation modeling, we present experimental
results with both manually created and automatically gener-
ated vowelized lexicons on the DARPA TRANSTAC collo-
quial Iraqi corpus.

Index Terms— Pronunciation modeling, Arabic ASR

1. INTRODUCTION

One of the prominent problems in developing automatic
speech recognition (ASR) systems for Arabic dialects is the
absence of short vowel information from acoustic transcripts
and in other text for language modeling. Typically, there are
two approaches to address this problem. The first is to use
a “grapheme” system where the pronunciation of a word is
based on just the orthographic form [1]. The alternative ap-
proach is to use a manual or automatic diacritization method
to derive the phonetic transcription of each word that explic-
itly includes the short vowels. Previous work [2, 3] showed
that such systems achieve significant word error rate (WER)
reduction over grapheme systems.
In principle manual diacritization should be the most ac-

curate. However, in practice it is a difficult and time consum-
ing task, especially for colloquial dialects of Arabic. Further-
more, most ASR systems use a language model which is typ-
ically trained on both the acoustic training and a potentially
large corpus of text from similar or different domains. Major-
ity of such relevant text resources do not have the short vowel
information and could not be used as is, if the ASR system
was trained with transcripts containing short vowels.
Automatic diacritization methods also have several short-

comings, most of which result due to the creation of signif-
icantly more vowelization variants than that are practically
useful. For example, the Buckwalter morphological analyzer
(BMA) outputs all possible vowelizations of an unvowelized

word. The increased pronunciation variations for any given
word has several undesired effects. First, it increases the con-
fusability with other words because the difference in pronun-
ciation between words usually becomes smaller. Second, it
increases the search space during decoding since the decoder
has to consider all possible pronunciations for each word.
A solution for trading off the benefit of multiple pronun-

ciation variants to the aforementioned undesired effects is to
use a pronunciation model [4]. In this paper, we introduce
a novel pronunciation model that incorporates word context
information to better model pronunciation variability in ab-
sence of any diacritics. The design of our proposed context-
dependent pronunciation model is motivated by the fact that
while reading Arabic text written without diacritics, an Ara-
bic speaker chooses the pronunciation for each word based
on neighboring words. We demonstrate the efficacy of this
context-dependent pronunciation modeling with a series of
experiments on the DARPA TRANSTAC Iraqi [5] corpus.

2. PRONUNCIATION MODELING

In order to formally introduce the pronunciation model for
ASR, the formulation of the speech recognition problem is
being presented first. The goal of speech recognition is to find
the word sequence W ∗ that has the highest posterior proba-
bility, given the sequence of observationsX = {x1, . . . , xT }:

W ∗ = argmax
W

P (X|W ) P (W ) (1)

= argmax
W

∑

U

P (X|U,W ) P (U,W ) (2)

≈ argmax
W

∑

U

P (X|U) P (U |W ) P (W ) (3)

Here, U = {u1, . . . , uM} denotes the sequence of sub-word
units, usually phonemes represented by a hidden Markov
model (HMM). Equation 3 makes the assumption that the
acoustic likelihood is independent of the word sequence
given the phoneme sequence. To compute the product
P (X|U)P (U |W )P (W ) we employ stochastic models of
the acoustic and linguistic properties. Hence, the values
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P (X|U), P (U |W ) and P (W ) are provided from the acous-
tic model, the pronunciation model, and the language model
(LM) respectively.
The pronunciation model provides a mapping between

acoustic models U and the wordsW . Let B = {b1, . . . , bN}
represent the sequence of phonemic representations (base-
forms) for the word sequence W = {w1, . . . , wN}. A
pronunciation dictionary determines how the sequence of
phonemes U are concatenated to form the baseform bi of
each word wi. In case bi has more than one phonemic rep-
resentation then the word has multiple pronunciations. In
general, the baseform pronunciations of a word are assumed
to be independent of the word context, that is,

P (U |W ) = P (B|W ) ≈
N∏

i=1

P (bi|wi) (4)

where bi is the pronunciation given to the word wi in the pro-
nunciation sequence B.

3. CONTEXT-DEPENDENT PRONUNCIATION
MODELING

While reading text without diacritics, an Arabic speaker
chooses a pronunciation based on neighboring words. Figure
1 illustrates the process of inferring the short vowels from
Arabic script that does not include diacritics. The top box
shows an Arabic text that contains the words “hw ktb” (in
Buckwalter romanization) without diacritics. The absence
of short vowels in the example makes the pronunciation of
the words ambiguous. The second word (“ktb”) in the text
can be diacritized in several ways (e.g. “kataba”, “kutub”,
“kutubu”). For brevity, in this example we give two pos-
sible choices. However, when the word “ktb” follows the
word “hw” then the vowelization in the bottom right box is
incorrect whereas the vowelization in the bottom left box is
correct. Therefore, the pronunciation of the words is really
context-dependent [4, 6, 7].
Therefore, instead of using context-independent pronun-

ciation probabilities, as shown in Equation 4, we use a n-gram
word context pronunciation model:

P (U |W ) =
N∏

i=1

P (bi|wi, . . . , wi−n) (5)

In this paper we only consider a bigram word context, i.e.
P (bi|wi, wi−1). Since the pronunciation model uses bi-
gram word context information we encounter the problem
of data sparseness. To overcome data sparseness we smooth
the context-dependent pronunciation probabilities with the
context-independent pronunciation probabilities using the
Witten-Bell smoothing [8]:

 
  

h-w  k-t-b 
(unvowelized) 

                                                
  h-u-w-a  k-a-t-a-b-a  h-u-w-a  k-u-t-u-b 

     (correct vowelization)     (incorrect vowelization) 

Fig. 1. Schematic example of vowelization. Top: Arabic
script with no diacritics; Bottom left: Arabic script with the
correct diacritics; Bottom right: Arabic script with incorrect
diacritics. The pronunciations are shown below the Arabic
script.

P (bi|wi, wi−1) = λwi,wi−1 ∗ PML(bi|wi, wi−1)
+ (1 − λwi,wi−1) ∗ P (bi|wi) (6)

where PML(bi|wi, wi−1) is the Maximum Likelihood (ML)
estimate of the bigram pronunciation probability and

λwi,wi−1 =
Nwi,wi−1

Nwi,wi−1 +
∑

bi
c(bi, wi, wi−1)

(7)

where Nwi,wi−1 = |{bi : c(bi, wi, wi−1) > 0}| is the number
of unique pronunciations that follow the history (wi, wi−1).
The term P (bi|wi) in Equation 6 is the smoothed unigram
pronunciation probability estimated by interpolating the ML
estimate of the unigram pronunciation probability with the
uniform pronunciation probability.

4. EXPERIMENTAL SETUP

4.1. Training and Test Data

The acoustic training consisted of 405 hours of Iraqi Arabic
speech collected under the TRANSTAC effort. These include
1.5-way (simple answers to questions) and 2-way (full dialog)
data collections for the force protection domain. Recognition
experiments for reporting WER were performed on a held out
validation set (Val), consisting of 16 hours (115K words). An
additional test set was used for development (Dev), consisting
of 16 hours (117K words). The Dev and Val sets are held-out
sets randomly selected from the TRANSTAC training data.

4.2. System Architecture

We used a perceptual linear prediction (PLP) front-end, that
computes 14 cepstral coefficients and normalized energy for
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each frame of speech. Phonetic word pronunciations were
created using a set of 39 phonemes derived from graphemes
[1]. The acoustic models were estimated in the ML frame-
work. Bigram and trigram LMs were estimated using 2.8
million words of text. The decoding lexicon was restricted
to 65K most frequent words in the acoustic training data.
Recognition was performed using our two-pass decoder.

The forward pass uses a State Tied Mixture (STM) model,
and an approximate bigram LM to produce a word lattice.
The backward pass then uses the word lattice and associated
scores from the forward pass to perform a detailed search a
using within-word state-clustered tied-mixture (SCTM) quin-
phone acoustic model and a trigram language LM. The top
scoring hypothesis represents the recognition output and an
N-best or a lattice can also be produced.
Ideally, the context-dependent pronunciation model should

be incorporated in the decoder itself. However, for our initial
exploration in this paper, we employed the following N-best
rescoring procedure:

1. For each hypothesis in the N-best list create a word lat-
tice. The lattice has only one path and the number of
arcs is the same as the number of the words in the hy-
pothesis (Figure 2, Top).

2. Expand the lattice for multiple pronunciations of a
word in the pronunciation dictionary. Each word in
the expanded lattice is also tagged by its corresponding
pronunciation (Figure 2, Bottom).

3. Rescore the lattice by relaxing the time boundaries by
+/- 10 frames.

4. Extract the top-10 hypotheses from the lattice along
with their acoustic score. The words are tagged by their
pronunciation. Now, each original N-best hypothesis
can create a maximum of 10 new hypotheses due to the
multiple pronunciations of its words.

5. Compute the pronunciation score of each expanded N-
best via Equation 5 using the pronunciation information
that is attached to the words.

6. Compute the total score by summing the individual
acoustic, pronunciation and language model scores.
Note, that since every expanded N-best list has the
same word sequence as the original hypothesis the lan-
guage model scores remain the same. The top scoring
hypothesis represents the recognition output.

Since the rescoring is performed on each arc separately,
all expanded arcs of a word are being constrained by the time
boundaries of the original hypothesis in the N-best list. While
relaxing the time boundaries alleviates this constraint, the op-
timal approach for evaluating context-dependent pronuncia-
tion model is to incorporate it in the full search.

Fig. 2. Schematic example of lattice rescoring. Top: Lattice
created from N-best hypothesis; Bottom: Expanded lattice for
multiple pronunciations. Words in the arcs are being tagged
by their corresponding pronunciation.

5. EXPERIMENTAL RESULTS AND CONCLUSIONS

We evaluated the context-dependent pronunciation model
with two dictionaries that had the same vocabulary but dif-
ferent number of pronunciations per word. The vowelization
method and creation of the pronunciations for the two dictio-
naries is discussed next.
The missing short vowels are added to the words in the vo-

cabulary using two resources: the manually vowelized dictio-
nary from Appen, Pty Ltd. (APPEN) and the BMA. The AP-
PEN dictionary has only about 1.1 pronunciations per word.
The Buckwalter morphological analyzer outputs all possible
vowelizations of a word that is in its dictionary and produces
an average of 5 pronunciations for each word.
Table 1 summarizes the characteristics of the dictionar-

ies. The first dictionary (Dict1) primarily uses manually vow-
elized words from the APPEN dictionary. If a word is not
found in the APPEN dictionary we use the automatically vow-
elized form from Buckwalter. The second (Dict2) uses the
reverse procedure. Finally, several phonological rules are ap-
plied to the pronunciations in both dictionaries to create the
final vowelized dictionaries [9]. Dict1 has an average of 2.5
pronunciations per word whereas Dict2 has 4.8.
The phonetic set consists of 62 speech phonemes (56 con-

sonants, 6 vowels), in addition to “silence” and two other non-
speech phones. This is to be compared to 39 phones for the
grapheme system. Note that our phonetic system uses almost
twice the number of consonants than other phonetic systems
for Arabic dialects [2]. This is due to the treatment of the

Source Dict1 Dict2
#wrds #prons/wrd #wrds #prons/wrd

APPEN 30K 1.1 6K 1.1
Buckwalter 27K 4.9 51K 5.2
Total 57K 2.5 57K 4.8

Table 1. Number of words and average pronunciations per
word from each source and for each dictionary.
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Shadda diacritic that marks the gemination (doubling) of a
consonant. When a consonant is marked by Shadda we use a
different phoneme for the specific consonant.
The phonetic system was trained via the same procedure

used for the baseline system as described in Section 4.2. No
pronunciation model was used during training. Similarly,
the baseline decoding experiments were carried out using
the same decoding procedure previously described in Section
4.2. No pronunciation model was used during decoding for
the baseline configuration. The output of the decoding was
an N-best list with N=100.
The pronunciation model was trained over word se-

quences along with their phonetic sequence. The word and
phoneme sequences were obtained by force-alignment of the
reference transcripts of the training as defined in Section
4.1. The proposed pronunciation model was evaluated on
the validation set defined in Section 4.1 using both Dict1 and
Dict2.
Before we present the performance of the pronunciation

model we return to the example of Figure 1. For brevity
we only provide the pronunciations and probabilities for two
choices. The context-independent or unigram pronunciation
probabilities for the two pronunciations of the word “ktb” are:

P (bi = “k-a-t-a-b-a” |wi = “ktb”) = 0.002
P (bi = “k-u-t-u-b” |wi = “ktb”) = 0.980

whereas the bigram context-dependent pronunciation proba-
bilities are:

P (bi = “k-a-t-a-b-a” |wi = “ktb”, wi−1 = “hw”) = 0.57
P (bi = “k-u-t-u-b” |wi = “ktb”, wi−1 = “hw”) = 0.28

As shown above, context-independent pronunciation proba-
bilities fail to assign a low score to the incorrect pronuncia-
tion of the example shown in Figure 1 in the context of the
previous word. On the other hand, the bigram pronunciation
probabilities give higher score to the correct pronunciation.
Note that the context-dependent probability for the incorrect
pronunciation (i.e. “kutub”) is high relative to the probabil-
ity of the correct pronunciation. This is a direct result of the
smoothing mechanism (see Equation 6) since the prior prob-
ability of the context-independent pronunciation probability
is almost 1. Nevertheless, the correct context-dependent pro-
nunciation has higher probability than the incorrect one.
Table 2 compares the performance of the proposed

context-dependent pronunciation model to the performance
of the context-independent pronunciation model. For com-
pleteness we also report results with no pronunciation model.
Furthermore, we report results from “best case” decoding
experiments that used unigram and bigram pronunciation
models trained on the “oracle” hypotheses. This last condi-
tion demonstrates the power of a well-trained pronunciation
model. Finally, we include the performance of the grapheme

Pronunciation System
Model Grapheme Phonetic Phonetic

Dict1 Dict2
None 39.7 33.8 41.5
Unigram - 33.6 41.0
Bigram - 33.4 40.8

Unigram (oracle) - 33.3 40.5
Bigram (oracle) - 33.0 38.7

Table 2. Word Error Rate (%) results for Grapheme system
and Phonetic systems using decoding dictionaries Dict1 and
Dict2 on the Val set.

system where the pronunciation of a word is based on its
orthographic form.
As shown in Table 2, when the decoding dictionary con-

tains a large number of pronunciation variants, the context-
dependent pronunciation model outperforms both context-
independent pronunciation modeling and decoding without
any pronunciation model. As one would expect the gains are
modest when there are fewer pronunciation variants. Also, the
oracle results indicate that the context-dependent modeling
can benefit from additional training data. Given manual vow-
elization is time consuming, the likely concept of operations
for acoustic modeling for Arabic dialects is the use of auto-
matic vowelization. In such cases, context-dependent pronun-
ciation modeling is clearly superior to context-independent
pronunciation modeling.
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