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ABSTRACT

We present a new feature extraction technique for phoneme
recognition that uses short-term spectral envelope and modula-
tion frequency features. These features are derived from sub-band
temporal envelopes of speech estimated using Frequency Domain
Linear Prediction (FDLP). While spectral envelope features are ob-
tained by the short-term integration of the sub-band envelopes, the
modulation frequency components are derived from the long-term
evolution of the sub-band envelopes. These features are combined
at the phoneme posterior level and used as features for a hybrid
HMM-ANN phoneme recognizer. For the phoneme recognition task
on the TIMIT database, the proposed features show an improvement
of 4.7% over the other feature extraction techniques.

Index Terms— Spectral envelope and Modulation frequency
features, Phoneme Recognition, Frequency Domain Linear Predic-
tion

1. INTRODUCTION

Time-varying spectrum of speech is usually derived as a sequence of
short-term spectral vectors, each vector representing instantaneous
values of spectral magnitudes at the individual carrier frequencies.
An alternative functionally equivalent representation is a collection
of temporal envelopes of spectral energies at the individual carrier
frequencies. The Fourier transform of these time-varying temporal
envelopes yields a set of modulation spectra of speech, where each
modulation spectral value represents the dynamics of the signal at
the given carrier frequency.

Conventional acoustic features for Automatic Speech Recogni-
tion (ASR) systems are typically based on the first of the two rep-
resentations, i.e. on the short-term spectrum. They are extracted by
applying Bark or Mel scale integrators on power spectral estimates
in short analysis windows (10 − 30 ms) of the speech signal. The
signal dynamics are represented by a sequence of short-term feature
vectors with each vector forming a sample of the underlying process.
These features are appended with derivatives of the spectral trajec-
tory at each instant to enhance the local speech variations. Typical
examples of such features are the Mel Frequency Cepstral Coeffi-
cients (MFCC) [1] and Perceptual Linear Prediction (PLP) [2].

On the other hand, it has been shown that important information
for speech perception lies in the 1− 16 Hz range of the modulation
frequencies [3]. Furthermore, in the presence of limited spectral
information, it has been shown that the use of temporal amplitude
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modulations alone provides nearly perfect human speech recogni-
tion [4]. This further emphasizes the importance of exploiting tem-
poral amplitude modulations as alternative feature representations
for ASR. In order to exploit the information in these modulation
frequencies, relatively long segments of speech signal need to be
analyzed [5]. For example, the more recent feature extraction tech-
niques like [6, 7] use the long-term dynamics of the sub-band en-
ergies for phoneme recognition. Combining the short-term spectral
information with modulation frequency components has also shown
to improve phoneme recognition performance [8].

In this paper, we develop a feature extraction technique that
combines the short-term spectral envelope features and the long
term modulations features. The spectral envelope features and mod-
ulation frequency features are both derived from the same initial
two-dimensional (time-frequency) representation of speech that is
formed by sub-band temporal envelopes. Specifically, speech signals
in frequency sub-bands are analyzed over long temporal segments
using the Frequency Domain Linear Prediction (FDLP). The FDLP
technique fits an all pole model to the squared Hilbert envelope of
the signal [9]. These representations of the speech signal are able
to capture fine temporal events associated with transient events like
stop bursts while at the same time summarize the signal’s gross
temporal evolution in timescales of several hundred milliseconds
[10].

In our case, the auditory spectrogram, which is a two-dimensional
representation of the input signal, is obtained by stacking the sub-
band temporal envelopes in frequency (similar to the stacking of
short-term spectral estimates in time for the conventional features).
The short-term spectral envelopes are derived by integrating the
auditory spectrogram in short analysis windows and the modula-
tion frequency components are obtained by the application of cosine
transform on the compressed (static and adaptive compression) long-
term sub-band temporal envelopes. The spectral envelope features
and the modulation features are combined at the phoneme posterior
level and used as features for the hybrid Hidden Markov Model -
Artificial Neural Network (HMM-ANN) phoneme recognition sys-
tem [11]. Experiments on a phoneme recognition task using the
TIMIT database compare the proposed features with other feature
extraction techniques.

The rest of the paper is organized as follows. In Sec. 2, the
FDLP technique for deriving sub-band envelopes is described. The
conversion of these sub-band envelopes into spectral envelope and
modulation frequency features is explained in Sec. 3. Experiments
with the proposed features for a phoneme recognition task are re-
ported in Sec. 4 along with a comparison of the results for the other
feature extraction techniques in the literature. In Sec. 5, we conclude
with a discussion of the proposed features.
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Fig. 1. Illustration of the all-pole modeling property of FDLP. (a)
a portion of the speech signal, (b) its Hilbert envelope (c) all pole
model obtained using FDLP
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Fig. 2. Deriving sub-band temporal envelopes from speech signal
using FDLP

2. FREQUENCY DOMAIN LINEAR PREDICTION

FDLP is an efficient technique for auto regressive (AR) modeling of
temporal envelopes of a signal [10]. It represents a dual technique
to the conventional Time Domain Linear Prediction (TDLP). In the
case of TDLP, the AR model approximates the power spectrum of
the input signal, whereas FDLP fits an all pole model to the Hilbert
envelope (squared magnitude of the analytic signal).

The FDLP technique is implemented in two parts - first, the
discrete cosine transform (DCT) is applied on long segments of
speech to obtain a real valued spectral representation of the signal.
Then, linear prediction is performed on the DCT representation to
obtain a parametric model of the temporal envelope. Fig. 1 illus-
trates the AR modeling of FDLP. It shows (a) a portion of speech
signal, (b) its Hilbert envelope computed using the Fourier transform
technique [12] and (c) an all pole approximation to the Hilbert En-
velope using FDLP. The block schematic for extraction of sub-band
temporal envelopes from speech signal is shown in Fig. 2. Long
segments of the input speech signal are transformed using DCT. The
sub-band DCT components are obtained by windowing the input
signal DCT on a bark scale. FDLP is applied on these sub-band
DCT components to estimate the sub-band temporal envelopes.

3. DERIVING FEATURES FROM SUB-BAND
TEMPORAL ENVELOPES

The sub-band temporal envelopes, estimated using FDLP, are con-
verted into spectral envelope and modulation frequency features.
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Fig. 3. Static and dynamic compression of the temporal envelopes.
(a) a portion of the temporal envelope of a speech signal, (b) static
compression (logarithm) and (c) adaptive compression using adap-
tive loops.

3.1. Spectral envelope features

The Hilbert envelope, which is the squared magnitude of the ana-
lytic signal, represents the instantaneous energy of a signal in the
time domain. Since integration of signal energy is identical in time
and frequency domain, the sub-band Hilbert envelopes can equiva-
lently be used for obtaining the sub-band energy based short-term
spectral envelope features. This is achieved by integrating the sub-
band temporal envelopes in short term frames (of the order of 25 ms
with a shift of 10 ms). These short term sub-band energies are then
converted into 13 cepstral features along with their first and second
derivatives (similar to 39 dimensional PLP features [2]). Each frame
of these spectral envelope features is used with a context of 9 frames
for training a phoneme posterior probability estimator [13].

3.2. Modulation features

The long-term sub-band envelopes from the FDLP form a compact
representation of the temporal dynamics over long regions of the
speech signal. The sub-band temporal envelopes are compressed us-
ing a static compression scheme which is a logarithmic function and
a dynamic compression scheme [14]. The dynamic compression is
realized by an adaptation circuit consisting of five consecutive non-
linear adaptation loops [14]. Each of these loops consists of a divider
and a low-pass filter with time constants ranging from 5 ms to 500
ms. The input signal is divided by the output signal of the low-pass
filter in each adaptation loop. Sudden transitions in the sub-band
envelope that are very fast compared to the time constants of the
adaptation loops are amplified linearly at the output due to the slow
changes in the low pass filter output, whereas the slowly changing re-
gions of the input signal are compressed. This is illustrated in Fig. 3
which shows (a) a portion of temporal envelope of a speech signal,
(b) logarithmically compressed temporal envelope and (c) the tem-
poral envelope compressed with the adaptive compression scheme.

The compressed temporal envelopes are divided into 200 ms
segments with a shift of 10 ms. Discrete Cosine Transform (DCT)
is applied on the static and the adaptive segments to yield the static
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Fig. 4. Schematic of the joint spectral envelope-modulation features for posterior based ASR

Table 1. Recognition Accuracies (%) of broad phonetic classes obtained from confusion matrix analysis

Class PLP FDLP-S M-RASTA FDLP-M PLP+M-RASTA FDLP-S+FDLP-M
Vowel 85.3 84.9 82.4 85.7 86.1 87.3

Diphthong 78.2 79.1 74.2 76.8 78.4 79.8
Plosive 83.8 82.8 81.6 84.1 84.6 85.4

Affricative 73.5 74.4 68.6 75.6 72.9 78.0
Fricative 85.8 85.9 83.5 86.8 86.4 88.0

Semi Vowel 76.2 74.9 72.9 77.1 77.8 79.0
Nasal 84.2 82.8 80.4 84.9 85.8 86.6
Avg. 81.0 80.7 77.7 81.6 81.7 83.4

and the adaptive modulation spectrum respectively. We use 14 mod-
ulation frequency components from each cosine transform, yielding
modulation spectrum in the 0 − 70 Hz region with a resolution of
5 Hz. This choice is a result of series of optimization experiments
(which are not reported here). The static and adaptive modulation
features for each sub-band are stacked together to obtain modula-
tion features for each sub-band and fed to the posterior probability
estimator.

We combine the spectral envelope and modulation frequency
features at the phoneme posterior level using the Dempster Shafer
(DS) theory of evidence [15]. Fig. 4 shows the schematic of the
proposed feature extraction technique.

4. EXPERIMENTS AND RESULTS

The phoneme recognition system is based on the Hidden Markov
Model - Artificial Neural Network (HMM-ANN) paradigm [11].
The MLP estimates the posterior probability of phonemes given the
acoustic evidence P (qt = i|xt), where qt denotes the phoneme
index at frame t, xt denotes the feature vector. The relation be-

tween the posterior probability P (qt = i|xt) and the likelihood
P (xt|qt = i) is given by the Bayes rule,

p(xt|qt = i)

p(xt)
=

P (qt = i|xt)

P (qt = i)
. (1)

A neural network, with sufficient capacity, trained on enough
data estimates the true Bayesian a-posteriori probability [11]. The
scaled likelihood in an HMM state is given by Eq. 1, where we
assume equal prior probability P (qt = i) for each phoneme i =
1, 2...39. The state transition matrix is fixed with equal probabili-
ties for self and next state transitions. Viterbi algorithm is applied to
decode the phoneme sequence.

Experiments are performed on the TIMIT database, excluding
‘sa’ dialect sentences. All speech files are sampled at 16 kHz. The
training data consists of 3000 utterances from 375 speakers, cross-
validation data set consists of 696 utterances from 87 speakers and
the test data set consists of 1344 utterances from 168 speakers. The
TIMIT database, which is hand-labeled using 61 labels is mapped
to the standard set of 39 phonemes [13]. A three layered MLP is
used to estimate the phoneme posterior probabilities. The network
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Table 2. Phoneme Recognition Accuracies (%) for different feature
extraction techniques

PLP 68.3
FDLP-S 68.1

M-RASTA 64.9
FDLP-M 69.3

PLP+M-RASTA 70.0
FDLP-S+FDLP-M 71.4

is trained using the standard back propagation algorithm with cross
entropy error criteria. The learning rate and stopping criterion are
controlled by the error in the frame-based phoneme classification on
the cross validation data. In our system, the MLP consists of 1000
hidden neurons, and 39 output neurons (with soft max nonlinearity)
representing the phoneme classes. The performance of phoneme
recognition is measured in terms of phoneme accuracy as well as
the recognition accuracy of broad phonetic classes. In the decod-
ing step, all phonemes are considered equally probable (no language
model). The optimal phoneme insertion penalty that gives maxi-
mum phoneme accuracy on the cross-validation data is used for the
test data.

Table 1 summarizes the results for the experiments with FDLP
based spectral envelope features and modulation features for the
recognition of broad phonetic classes. In the base-line experiments,
the proposed features are compared with two other feature extrac-
tion techniques on the same task - the PLP features with a 9 frame
context [13] which are similar to spectral envelope features derived
using FDLP (FDLP-S) and M-RASTA features [6] which are similar
to features derived using FDLP from the modulation spectra (FDLP-
M). We combine the spectral envelope and modulation frequency
features using the DS theory of evidence to obtain two more feature
sets - PLP features with M-RASTA features (PLP+M-RASTA) and
FDLP-S features with FDLP-M features (FDLP-S+FDLP-M). Ta-
ble 2 shows the results for phoneme recognition accuracies across
all individual phoneme classes for these techniques. The FDLP-S
features provide comparable results as the PLP-9 features. The mod-
ulation features (FDLP-M) result in improved phoneme recognition
rate for all the broad phonetic classes compared to the M-RASTA
features and hence, provide significant improvements in individ-
ual phoneme recognition rate (Table 2). Further, the joint spectral
envelope and modulation features yield improved phoneme class
recognition for all the broad phonetic classes compared to the base-
line system. We obtain a relative improvement of 9.2 % over the
baseline system for recognition of broad phonetic classes and an
improvement of 4.7 % (which is statistically significant) in the
individual phoneme recognition rate.

5. CONCLUSIONS

We have proposed a novel method of extracting spectral envelope
and modulation features for ASR. The spectral envelope features de-
rived from sub-band temporal envelopes are comparable to conven-
tional features that are derived from short-term power spectral esti-
mates. The FDLP based modulation features are significantly better
than other features based on the modulation spectrum. Combining
the spectral envelope and modulation features provides significant
improvements over the base-line system for phoneme recognition
tasks. The results on clean conditions are promising and encourage
us to experiment on other tasks in noisy conditions.
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