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ABSTRACT

Letter units, or graphemes, have been reported in the lit-

erature as a surprisingly effective substitute to the more tradi-

tional phoneme units, at least in languages that enjoy a strong

correspondence between pronunciation and orthography. For

English however, where letter symbols have less acoustic

consistency, previously reported results fell short of systems

using highly-tuned pronunciation lexicons. Grapheme units

simplify system design, but since graphemes map to a wider

set of acoustic realizations than phonemes, we should ex-

pect grapheme-based acoustic models to require more train-

ing data to capture these variations.

In this paper, we compare the rate of improvement of

grapheme and phoneme systems trained with datasets rang-

ing from 450 to 1200 hours of speech. We consider various

grapheme unit configurations, including using letter-specific,

onset, and coda units. We show that the grapheme systems

improve faster and, depending on the lexicon, reach or sur-

pass the phoneme baselines with the largest training set.

Index Terms— Acoustic modeling, graphemes, directory

assistance, speech recognition.

1. INTRODUCTION

Most large vocabulary speech recognition systems depend on

three highly optimized models: a language model that esti-

mates the probability of a sequence of words; a pronunciation

model that describes how the words are divided into phoneme

units; and an acoustic model that estimates the probability of

observing a given acoustic feature vector in a given phonetic

context.

While the language and acoustic models are typically

trained with statistical training algorithms, the pronunciation

models tend to be more ad hoc. Most commercial systems

rely on a combination of a hand-made lexicon for common

words and a pronunciation generation engine for words not

listed in the lexicon. Often these pronunciations are later re-

fined algorithmically based on acoustic data (e.g. [1]), or re-

vised manually for increased accuracy.

While the language and acoustic models typically can

grow and improve with more training data (e.g. more n-

grams and longer spans for language models, more states and

more Gaussians per state for acoustic models), the pronunci-

ation models often don’t scale well with increasing amounts

of data.

This raises the question of whether it is desirable to keep

a pronunciation model when large amounts of training data

are available. In a sense, the lexicon provides a data-tying

layer between the orthographic and acoustic representation of

words, and as data increases, it is possible that this tying be-

comes unecessary and may even become a bottleneck.

One could easily build words out of letter-based units, or

graphemes, instead of phoneme units, and transform the lex-

icon generation problem into a purely acoustic training prob-

lem. We may then expect common statistical approaches to

lead to consistent improvements with increasing amounts of

supervised and unsupervised data.

The idea of considering alternatives to phoneme units is

not new. More than 20 years ago, Cravero et al. [2] proposed

a unit set optimized for consistency and cardinality. Ten years

ago, several research groups investigated syllable units, which

have the promise of an improved mapping between spelling

and acoustics [3, 4, 5, 6].

More recently and perhaps due to a growing interest for

recognizing multiple languages, researchers confronted with

the bewildering task of maintaining not one but several lexi-

cons asked the inevitable question “what if we just used let-

ter units instead?” Kanthak et al. [7] and Killer et al. [8]

observed experimentally that for some languages, grapheme

systems performed roughly as well as phoneme systems, but

that for others, such as English, there was a high error-rate

cost to moving to graphemes. This was attributed by the au-

thors to the poor spelling to pronunciation correspondance of

the English language, which is another way of observing that,

in English, letter units lack acoustic consistency, and that con-

sistency matters, much like Cravero et al. had suggested. But

the experiments reported in these papers relied on training sets

of roughly tens of hours of speech. If consistency matters,

then the amount of data should matter too.

In this paper, we explore the scalability of grapheme sys-

tems, i.e. how quickly their performance improves with data,

compared to phoneme systems. We base our experiments

on data from GOOG-411 [9], an automated system that uses

speech recognition and web search to help people call busi-

nesses. GOOG-411 is a good test bed for grapheme exper-
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iments: business name recognition imposes interesting pro-

nunciation and language modeling challenges, and a live com-

mercial system provides complex acoustic variety.

2. PHONEME BASELINE SYSTEM

The speech recognition engine is a standard, large-vocabulary

recognizer, with PLP features and LDA, GMM-based tri-

phone HMMs with three states per triphone and 24 Gaus-

sians per state, decision-tree state clustering, STC [10], and

an FST-based search [11]. All acoustic models evaluated here

are gender-independent, one-pass, and maximum-likelihood

trained.

The lexicon used both for training and testing is a mix

from various sources, with some manual tuning for entries

that caused frequent recognition errors. A pronunciation en-

gine trained from the lexicon using pronunciation by anal-

ogy (PbA) [12] is used as a backoff for words not in the lexi-

con. Some lexicon entries have multiple pronunciations, and

PbA is configured to generate at most three pronunciations

per word. The phone set consists of 43 Darpabet units. Sam-

ple lexicon entries are listed in Table 1.

word pronunciation

apple /ae/ /p/ /ax/ /l/

google /g/ /uw/ /g/ /ax/ /l/

stanford /s/ /t/ /ae/ /n/ /f/ /er/ /d/

Table 1. Lexicon entries in the baseline phoneme system.

3. GRAPHEME SYSTEMS

The grapheme systems described below are based on the same

architecture as the baseline phoneme system, except that the

unit set is different. The front-end, trainer, and decoder are

unchanged. Context is still modeled by training tri-grapheme

HMMs with 3 states per model. The decision-tree clustering

algorithm uses a few broad “phonetic” classes adapted from

true phonetic classes from the baseline system, e.g. vowel: a
e i o u, nasal: m n, and the units themselves taken in isolation,

e.g. a: a, b: b. No specific attempt was made at optimizing

these classes; they are most similar to what Killer called “sin-

gletons” in [8].

3.1. 26-Letter Grapheme Systems

The first grapheme system we implemented uses the 26 letters

of the English alphabet. Sample lexicon entries are listed in

Table 2.

3.2. Letter-Specific Units

To date, our training and recognition implementation does not

support word-boundary context modeling, and isolated letters

word pronunciation

apple /a/ /p/ /p/ /l/ /e/

google /g/ /o/ /o/ /g/ /l/ /e/

stanford /s/ /t/ /a/ /n/ /f/ /o/ /r/ /d/

Table 2. Lexicon entries in the 26-letter grapheme system.

in acronyms are pronounced differently than within-word let-

ters. Therefore, we included in the second grapheme systems

a set of letter-specific units as shown in Table 3. These units

are not as efficient as direct word-boundary modeling with

decision trees, but at least preserve the context knowledge of

the acronym during acoustic modeling. This brings the total

number of units in this system to 52.

word pronunciation

u / u /

s / s /

a / a /

cat /c/ /a/ /t/

Table 3. Lexicon entries in the grapheme system with letter-

specific units.

3.3. Onset and Coda Units

Likewise, we added word-initial (onset) and word-final (coda)

units in the third grapheme system, as shown in Table 4.

Again, this makes relevant context information available for

acoustic modeling. This grapheme system has 104 units.

word pronunciation

apple / a/ /p/ /p/ /l/ /e /

google / g/ /o/ /o/ /g/ /l/ /e /

stanford / s/ /t/ /a/ /n/ /f/ /o/ /r/ /d /

Table 4. Lexicon entries in the grapheme system with letter-

specific and boundary units.

4. EXPERIMENTS

4.1. Data and Task

All experiments reported below were performed on GOOG-

411 data. We defined four training sets of roughly 300K, 1M,

3M and 9M utterances (450, 1400, 4000, and 12000 hours) by

picking random calls from our pool of manually transcribed

data. These utterances contain city-state (“San Francisco Cal-

ifornia”) and business queries (“Starbucks”), as well as com-

mands (“go back”, “start over”). The test set consists of 30K

city-state and business utterances (no commands) taken from

calls and calling periods not included in the training data.

The language model (LM) is a simple 100K phrase list

that includes the test data transcriptions, and is placed in par-

allel with a 25K unigram containing all the words from the
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phrase list. This is more manageable for rapid experimenta-

tion than the large production LM used for GOOG-411. By

intentionally including the test data in the LM, we were able

to approximate the error rate of the production system on this

test set with a single small LM.

Performance is reported both in terms of word error rates

and sentence semantic accuracy. In the latter, differences such

as “kinko’s” vs. “kinkos” or “italian restaurant” vs. “italian

restaurants” are ignored in scoring.

4.2. Results

We first trained and evaluated a baseline phoneme system for

each training set. The semantic-level sentence accuracy of

these systems is reported in Fig. 1 (see the “Phoneme Base-

line” curve). Accuracy increases by slightly over 1% absolute

at each tripling of the training size, from 75.5% at 300K ut-

terances to 78.3% at 9M.

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

9M3M1M300K

S
en

te
nc

e 
S

em
an

tic
 A

cc
ur

ac
y 

(%
)

Training Set Size (# utterances)

"Phoneme Baseline"
"Phoneme Baseline w/ Autogen Prons"

"Grapheme"
"Grapheme w/ Letters"

"Grapheme w/ Letters and Boundaries"

Fig. 1. Sentence semantic accuracy for the various systems.

Another phoneme baseline was then trained and evalu-

ated by eliminating the pronunciation lexicon, thereby forc-

ing all the pronunciations, in training and testing, to be au-

togenerated by the PbA pronunciation engine. This baseline

is meant to give a sense of how much worse the phoneme

system is when no (hand-tweaked) lexicon is available. Of

course the PbA engine itself was trained from some lexicon,

so this baseline does not totally eliminate the lexicon. The

accuracy of this system, refered to as “Phoneme Baseline w/

Autogen Prons” in Fig. 1, is roughly 2% absolute worse than

the “Phoneme Baseline” across the range of training set sizes,

with 73% accuracy at 300K utterances to 76.5% at 9M.

We then trained and evaluated the grapheme systems. The

first system, or “Grapheme” in the figure, with 26 letter units,

starts 3% absolute lower than the “Phoneme Baseline w/ Au-

togen Prons” system for the smallest training set, but outper-

forms it as the amount of training data increases (76.9% vs

76.5% for the largest training set). This is consistent with

Kanthak’s and Killer’s observations [7, 8] (Kanthak’s English

training set contained less than 100 hours of speech). It is

also consistent with our intuition that training data can some-

what compensate for the acoustic diversity of English letters

by implicitly modeling the various sounds corresponding to

each letter symbol.

The second grapheme system, with letter-specific units,

“Grapheme w/ Letters” in the figure, brings additional im-

provements over the simple grapheme models.

Finally, the full models with onset and coda units,

“Grapheme w/ Letters and Boundaries” in the figure, show

the most interesting behavior in terms of performance growth

with data. This last system starts worst (69.5%) and ends best

of the grapheme systems (77.4%): an 8% absolute gain as the

data grows, compared to a 3.5% improvement for the base-

line phoneme system. With 9M utterances, the largest train-

ing set we experimented with, the sentence semantic accuracy

for the best grapheme system is within 1.4% of our baseline

phoneme system. The last system doesn’t work well with

small amounts of training data because there aren’t enough

data to estimate parameters required by adding the extra units.

It should be noted that the systems compared here have

roughly the same number of parameters: the grapheme sys-

tem has more units (104 graphemes vs. 43 phonemes), but

because the decision trees use the number of samples in a

node as a split-stopping criterion, fewer tri-grapheme clusters

are created on average per grapheme, resulting in roughly the

same total number of states (18.1K states for the phoneme

system, 18.3K for the grapheme system, with the 9M training

set).

Fig. 2 shows the same analysis of the various systems, but

this time considering word-error rates (WER). Using WER,

the best grapheme system starts 5% absolute ( 19% relative)

worse than the phoneme baseline with 300K training utter-

ances, but with 9M utterances, the grapheme system is only

0.4% absolute (0.02% relative) worse than the phoneme sys-

tem.
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While letter-units are a poor substitute to phoneme units

for small systems, with increasing data and growing models,

their performance improves faster.

4.3. Error Analysis

Table 5 compares some of the distributions of errors for the

best grapheme system and the phoneme baseline. It shows

different sub-sections of the test data and considers two sig-

nals: “OOL-utts” are utterances where the transcription in-

cludes at least one word that isn’t in the lexicon so we used

the PbA engine; and “LTR-utts” are utterances where the tran-

scription includes at least one single-letter word (acronyms).

A denotes the set of all utterances, Pc, Pe, Gc, and Ge denote

the sets of correct and error utterances for the phoneme and

grapheme systems, respectively.

set % utts % OOL-utts % LTR-utts

A 100 3.7 5.6

Pe 21.3 8.7 5.6

Ge 22.7 4.1 7.4

Pe ∩ Ge 18.3 8.1 5.7

Pe ∩ Gc 3.0 12.1 4.5

Pc ∩ Ge 4.5 4.3 18.3

Table 5. Percent sentence errors in various data subsets and

systems (total = 30K sentences).

First, clearly most of the errors are common to both sys-

tems. While this limits system combination opportunities, it

shows that with enough data and no lexicon, the grapheme

system converges to mostly the same error distribution as the

phoneme system.

Second, when the grapheme system corrected an error

that the phoneme system made, the utterance is 3 times

more likely than the average utterance to include a word that

wasn’t in the lexicon. This observation is consistent with the

grapheme system being more accurate than the phoneme sys-

tem with autogenerated pronunciations: graphemes are better

than what are likely poor autogenerated pronunciations.

And third, when the grapheme system makes an error on

an utterance that the phoneme system got right, the utterance

is about 3 times more likely than the average utterance to in-

clude a single-letter word. While the letter-specific units pro-

vided improvements over the simple grapheme system, there

is more to explore in terms of context, unit-selection, and data

sharing.

5. CONCLUSION

We explored the feasability of replacing the phoneme units in

a large-scale speech recognition system such as GOOG-411

with a set of letter-based units, thereby eliminating the need

for a pronunciation lexicon and pronunciation engine, each

of which imposes large off-line and run-time constaints on

production systems.

We learned that with sufficient context modeling and

enough training data, even with the orthographic-to-acoustic

inconsistencies of English, graphemes may still be a suitable

alternative to traditional phonemes. We saw comparable error

rates with both systems, and graphemes seem to correct sen-

tences with poor pronunciations. They seem to require proper

modeling of word-boundary context, which we’ve only ap-

proximated through unit definition. Extending the unit set and

context modeling may provide even faster improvements with

increasing data.
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